PACIFIC REGIONAL PLANETARY DATA CENTER # DATA USERS' NOTE # APOLLO 15 LUNAR PHOTOGRAPHY DECEMBER 1972 NATIONAL SPACE SCIENCE DATA CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • GODDARD SPACE FLIGHT CENTER, GREENBELT, MD. REFERENCE COPY # DATA USERS' NOTE APOLLO 15 LUNAR PHOTOGRAPHY # Prepared by Winifred Sawtell Cameron, Acquisition Scientist Mary Anne Niksch, Technical Editor National Space Science Data Center Goddard Space Flight Center National Aeronautics and Space Administration Greenbelt, Maryland 20771 December 1972 | | | 3 | |--|--------|--| į: | | | | | | | | | | | | c | 1 : | | | | ; ************************************ | | | | | | | | ç | W + 16 | | | | | | | | | | # NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771 NATIONAL SPACE SCIENCE DATA CENTER CODE 601 TELEPHONE 301-982-6695 Dear Colleague: This Apollo 15 Data Users' Note has been prepared by the National Space Science Data Center (NSSDC) with important contributions being provided by Mr. Fred Doyle, Topographic Division, U.S. Geological Survey, and Mr. George Esenwein and Mr. Leon Kosofsky, Apollo Lunar Exploration Office, NASA Headquarters. The purpose of this document is to provide you with substantial information on the photography taken during the Apollo 15 mission and to aid you in the selection of Apollo 15 photographs for study. Ten index maps indicating the areas covered by the photographs are being sent with this Note. It should be noted that this information package is quite different from those for previous missions. For the Apollo 11 through 14 missions, NSSDC, with the aid of the Mapping Sciences Laboratory, Manned Spacecraft Center, prepared photographic proof print catalogs and frame index data in the form of printed documents. The volume of photography and data increased so greatly with Apollo 15, however, that they have been prepared in microform. They are therefore not included with this package. A complete description of the microform photographic catalogs and supporting data available from NSSDC can be found in this Note in the sections titled "Photographic Coverage and Quality" and "Format of Available Photographic and Supporting Data." An order form is provided at the end of the Data Users' Note for your use in ordering all forms of Apollo 15 data available from NSSDC. Your comments on the contents of the Apollo 15 documentation and on the services offered by NSSDC are invited. Very truly yours, James I. Vette Director, NSSDC | • | | | | |---|---|--|--| • | • | • | #### FOREWORD The purposes of this <u>Data Users' Note</u> are to announce the availability of Apollo 15 pictorial data and to aid an investigator in the selection of Apollo 15 photographs for study. As background information, the <u>Note</u> includes brief descriptions of the Apollo 15 mission objectives, photographic equipment, and photographic coverage and quality. The National Space Science Data Center (NSSDC) can provide photographic and supporting data as described in the section on Format of Available Photographic and Supporting Data. The availability of any data received by NSSDC after publication of this <u>Note</u> will be announced by NSSDC in a Data Announcement Bulletin. NSSDC will provide data and information upon request directly to any individual or organization resident in the United States and, through the World Data Center A for Rockets and Satellites, to scientists outside the United States. All requesters should refer to the section on Ordering Procedures for specific ordering instructions and for NSSDC policies concerning dissemination of data. | | | | | M | |--|--|--|--|---| | | | | | , | • | | | | | | , | # CONTENTS | | Page | |--|--| | INTRODUCTION | 1 | | MISSION OBJECTIVES | 2 | | PHOTOGRAPHIC EQUIPMENT AND OBJECTIVES | 3 | | Surface Photographic Equipment | .3 | | 70-mm Hasselblad Data Cameras | 3
3
5 | | Orbital Photographic Equipment - The SIM Bay Cameras | 5 | | Mapping Camera System | 5
7 | | Orbital Photographic Equipment - Command Module Cameras | 8 | | 70-mm Hasselblad Electric Camera | 8
9
9
9 | | SPECIAL PHOTOGRAPHY SEQUENCES AND EXPERIMENTS | 9 | | PHOTOGRAPHIC COVERAGE AND QUALITY | 11 | | FORMAT OF AVAILABLE PHOTOGRAPHIC AND SUPPORTING DATA | 16 | | 70-mm Hasselblad Photography Panoramic Hasselblad Mosaics 35-mm Nikon Photographs Mapping Camera Photographs Panoramic Camera Photographs Panoramic Camera Rectified Photographs 16-mm Maurer Films 16-mm Television Films | 16
18
18
18
22
23
23
23 | | ORDERING PROCEDURES | 26 | | LIST OF ACRONYMS AND ARRESTATIONS | 20 | # CONTENTS (continued) | | Page | |--|---| | ACKNOWLEDGMENTS | 31 | | BIBLIOGRAPHY | 33 | | APPENDIX A - Summary of Experiments Carried on Apollo 15 | A-1 | | APPENDIX B - Lunar Surface Track Coverage and Samples of Apollo 15 Photographic and Supporting Data | B-1 | | LIST OF TABLES | | | Summary of Apollo 15 Primary Photographic Equipment Hasselblad Surface Photography Summary Summary of Mapping Camera Photography Summary of Panoramic Camera Photography NSSDC Inventory for Panoramic, Mapping, and Hasselblad Photography Summary of Panoramic Mosaics Summary of Maurer 16-mm Coverage 16-mm TV Kinescope Film Log | 4
12
13
15
17
19
24
25 | | LIST OF FIGURES | | | Lunar Surface Track Coverage of Mapping Camera Lunar Surface Track Coverage of Panoramic Camera Representative Photographs Sample of Hasselblad Index, by Photo Number Sample of Hasselblad Index, by Surface Activities Sample of Hasselblad Index, by Longitude Sample of Supporting Data for Mapping Camera Photographs Sample of One-Line Index for Mapping Camera | B-3
B-4
B-5
B-14
B-15
B-16 | | Photographs | B-18 | | Photographs | B-19 | #### APOLLO 15 LUNAR PHOTOGRAPHY #### INTRODUCTION Apollo 15 (1971-063A) was launched from Cape Kennedy, Florida, on July 26, 1971, at 1334 UT (09:34 EDT) on a 12-day lunar landing mission and had a total flight time of 295 hr 11 min 53 sec. The total extravehicular activity (EVA) time was 18 hr 34 min on the lunar surface and 38 min 12 sec for inflight recovery of the film cassettes from the cameras in the spacecraft Scientific Instrument Module (SIM). The spacecraft reached the lunar environment on July 30, 1971, and returned the crew to earth on August 7, 1971, about 507 km north of Pearl Harbor, Hawaii. Approximately 82 kg (180 1b) of lunar samples were returned. The Apollo spacecraft consisted of: a Command Module (CM) in which Astronauts David Scott (Commander), James B. Irwin (Lunar Module Pilot), and Alfred E. Worden (Command Module Pilot) traveled from earth to lunar orbit; a Lunar Module (LM), which transported Astronauts Scott and Irwin to the lunar surface and also carried the Lunar Roving Vehicle (LRV); a Service Module (SM), which contained the major propulsion units and fuel cells for the spacecraft and in which space (bay) was provided to house the Scientific Instrument Module; and a subsatellite, which was launched from the spacecraft on August 4, 1971, before the transearth coast (TEC) period. This mission was the first of the J-series missions, for which (1) the LRV is carried for greater mobility of the astronauts during their EVA on the lunar surface, (2) the astronauts spend three days on the lunar surface, and (3) the SIM bay is included in the spacecraft configuration. During the lunar orbit insertion (LOI) phase of the mission, the spacecraft maintained a 106-x 299-km orbit. The LM separated after descent orbit insertion (DOI) in an orbit of 5 x 110 km. During the LM landing phase, the CM maintained a slightly elliptical orbit of 90-x 115-km altitude. The LM successfully landed in the Hadley-Apennine region
at longitude 3° 39' 30'' E and latitude 26° 06' 54'' N close to the Hadley RiII and the foot of the Apennine Mountains. Mission photography was accomplished from the Command Module, from the Lunar Module, during EVAs, and from the SIM of the SM (still joined with the CM) during 5 days in lunar orbit. Located in the SIM were the automatically operated assembly of the Fairchild mapping (metric) camera, the stellar camera, the RCA ruby laser altimeter, and the Itek optical-bar panoramic camera. The Command Module photographic package included a 16-mm Maurer data acquisition camera (DAC) with 10-mm, 18-mm, and 75-mm lenses; a Hasselblad electric camera (HEC) with 80-mm and 250-mm lenses, as well as a 105-mm ultraviolet-transmitting lens; a Nikon 35-mm camera with a 55-mm lens; and a Westinghouse color TV camera. Carried on the Lunar Module were a Maurer 16-mm camera with a 10-mm lens, three Hasselblad data cameras (HDC), two with 60-mm lenses and one with a 500-mm lens, and an RCA TV camera. #### MISSION OBJECTIVES For this fourth Apollo lunar landing (Apollo 13 did not land), the mission objectives were: (1) to perform selenological inspection consisting of a survey of surface features and a sampling of surface materials in a preselected area of the Hadley-Apennine region; (2) to emplace and activate surface experiments; and (3) to conduct inflight experiments and photographic tasks from lunar orbit. The lunar surface activities included deployment of the Apollo lunar surface experiments package (ALSEP) consisting of the following experiments: (1) heat flow, (2) lunar surface magnetometer, (3) passive seismometer, (4) cold cathode gage, (5) solar wind spectrometer, (6) suprathermal ion detector, and (7) lunar dust detector. In addition, the laser ranging retroreflector and the solar wind composition experiments were deployed. Inspection, survey, and sampling involved the collection of: (1) the contingency sample, (2) soil and rocks of geologic interest, (3) core-tube samples, (4) trench soil samples, (5) drill-core samples, and (6) a descent-engine-exhaust contamination sample for the lunar geological investigation. The soil mechanics experiment was conducted as a part of the geologic investigation. The mobility of the Lunar Roving Vehicle, which permitted excursions of several kilometers from the LM landing site, enabled the astronauts to perform these tasks. The lunar orbital experiments were: (1) gamma-ray spectrometer, (2) X-ray fluorescence spectrometer, (3) alpha-particle spectrometer, (4) mass spectrometer, (5) bistatic radar, (6) S-band transponder, and (7) the Apollo window meteoroid. The subsatellite that was released contained three experiments: (1) particle shadows/boundary layer, (2) magnetometer, and (3) S-band transponder. The lunar photographic tasks were: (1) ultraviolet photography of the earth and moon, (2) photography of the gegenschein from lunar orbit, (3) Service Module orbital photographic tasks, and (4) Command Module photographic tasks. A summary of the experiments carried on Apollo 15 can be found in Appendix A. # PHOTOGRAPHIC EQUIPMENT AND OBJECTIVES The Apollo 15 mission was designed to obtain the most extensive quantity and variety of photography of any mission thus far. There were several different varieties of photographic equipment, both on the surface and in orbit, that fulfilled entirely different functions. Table 1 summarizes the camera characteristics; the following discussions give brief descriptions of the camera functions. ## Surface Photographic Equipment The camera equipment operated on the lunar surface or in the LM by Astronauts Scott and Irwin included: - (1) three Hasselblad data cameras (HDC) (LM1 and LM2 in Table 1) that were battery powered and semiautomatic. These cameras used 500-mm and 60-mm lenses. - (2) a 16-mm data acquisition camera (DAC) (LM3) with a polarizing filter and a 10-mm lens. - (3) a color TV camera (LM4) and associated equipment. #### 70-mm Hasselblad Data Cameras Three 70-mm Hasselblad data cameras were carried by the astronauts on the lunar surface. Two cameras (LM2) were equipped with 60-mm focal length lenses; the other had a high-resolution 500-mm lens (LM1). These cameras were battery powered, semiautomatic, and, for most operations, attached to the astronauts' pressure suits at chest height. The astronauts could initiate the operating sequence by squeezing a trigger mounted on the camera handle, and the cameras were operable at check stops at each half-stop value. A reseau grid was installed in front of the image plane to provide photogrammetric data, and the cameras were accurately calibrated. #### 16-лип Maurer Data Acquisition Camera The 16-mm Maurer DAC (LM3 in Table 1) had frame rates of 1, 6, and 12 fps in the automatic mode and 24 fps in the semiautomatic mode with corresponding running times of 93.3, 15.5, 7.8, and 3.7 min, respectively. A green light emitted light pulses at the frame rates. Fiducial marks were recorded on the film. The camera could be hand held or used in a boresight mount on the Lunar Module on windows 1 or 3. TABLE 1 SUMMARY OF APOLLO 15 PRIMARY PHOTOGRAPHIC EQUIPMENT | | CAMERA | FOCAL
LENGTH
(mm) | APERTURE
OPENING | FOCUS
(meters) | SHUTTER
SPEED
(sec) | FIELD
OF VIEW
(deg) | CASSETTE
CAPACITY | FOCUS SHUTTER FIELD CASSETTE FILM (meters) (sec) (deg) | RESOLUTION | KIND | ASA
RATING | AMOUNT
RETURNED
(mag) | |--------|--------------------------------|-------------------------|--------------------------|--|--------------------------------------|---|---|--|---------------------------------------|--------------------------------------|--------------------------------------|-----------------------------| | CM1 | 70-mm
Hasselblad EL | | | | | | | | | | | | | | lens a | 80 | f/2.8 to
f/22 | l to
infinity | 0.002
to 1.0 | 37.9 side
51.8 ding. | 58.5 m
49.2 m | SO-368 (CEX) | 80 lines/mm | Ekt. MS | 2 | 7*** | | | lens b | 250 | f/5.6 to
f/45 | 2.6 to
infinity | 0.002
to 1.0 | 12.5 side
17.6 ding. | 58.5 m
49.2 m | SO-168 (HCEX)
3400 (B/W) | 80 lines/mm | Ekt. MS | 160
80 | ***6 | | | lens c | 105 UV* | f/4.3 to
f/8 | infinity | 0.002
to 20 | 29.4 side
41.0 diag. | *************************************** | 11 a-0 | - | | | *1 | | CM2 | I6-mm
Maurer DAC
(movie) | | | = | | | | | | | | | | | e suo | 10 | T1.8 to T22 | 0.2 to
infinity | 0.001 to 0.167 and T-time frame rate | 54.9 hor.
41.1 vert.
65,2 diag. | 43 m | SO-168 (HCEX
and CIN) | 80 lines/mm | eki. Es
& Ef | -091
1000
1001
1000
1001 | | | | lens b | 18 | T1.0 to T22 | 0.03 to
infinity | 1,6
12, 24
fps | 32.6 hor.
23.4 vert.
39.2 diag. | 43 m | 3400 (B/W)
3414 (LBW) | | Pan-X | AEI 6
80 | **!! | | | lens e | 75 | T2.4 to T22 | L.1 to
infinity | | 7.9 hor.
5.7 vert.
10.0 diag. | 43 m | 3401 (HBW)
2485 (VHBW) | 1 | Plus-XX | High
Speed
6000 | | | CM3 | 35-mm
Nikon** | . 55 | f/1.2 to
f/16 | I | 0.001 to
1.0, B or
T time | 36.0 hor.
24.0 vert. | 2.6 ш | 2485 (VHBW) | 58 lines/mm
21 lines/mm | - | 0009 | 4 | | | Sextant | 36 | 1/8 | ١ | variable | 1 | - | 1 | 1 | Ļ | ı | | | C)N4 | Δ. | l | f/4 to f/44 | 0.6 to
infinity
0.5 to
infinity | 30 fps | - 1 | ******** | l . | 200 TV
lines/pic
5-12000
f-c | Operation
Range | l | | | SIMI | Panoramic | 610 | (/3.5 stereo
and mono | isfinity | variable,
automatic | 36 fore,
aft x 108
across
(stereo)
11 x 108
(mono) | 3060 m | 3414 (LBW) | 135 lines/mm | Pan | AEI 6 | 18(2060 m) | | SIM2 | Laser
Altimeter | 1 | ı | I | variable,
automatic | 200 mrad | ļ | ı | ±2 m | i | 1 | 1 | | SIM3 | Mapping | 76 | 1/4.5 | infinity | automatic | 74 x 74 | m 09‡ | 3400 (B/W) | 90 lines/mm | Pan-X | 08 | 5(460 m) | | SIM4 | 35-mm
Stellar | 76 | 6/2.8 | infinity | 1.5 | 18.0 hor.
24.0 vert. | 156 m | 3401 (HBW) | 80 lines/mm | Plus-XX | High
Speed | 1 | | LMI | 70-mm
Hasselblad DC | 500 | f/8.0 to
f/11 | 106
(1 km) | 0.002 to
1.0,
B-bulb | 6.2 side
8.8 ding. | т 7.64 | SO-174
SO-368 (CEX) | ***** | Ekt. MS | 278,
6000 | ***6 | | LM2 | 70-mm
Hasselblad DC | 09 | 1/5.6 to
1/22 | 0.9 to
infinity | 0.002 to
1.0,
B-bulb | 46.9 side
63.4 diag. | 49.2 m | SO-368 (CEX)
SO-168 | 1 | Ekt. MS | 160 | | | LM3 | 16-mm
Maurer DAC | 10 | T1.8 to T22 | 0.15 to
infinity | variable | 54.9 hor.
41.1 vert.
65.2 diag. | 43 m | SO-168
SO-368 | | Ekt. ES
& EF | 160
6000 | * | | FW4 | 2 | l | f/2 to f/22 | 0.6 to
infinity
0.5 to
infinity | 30 fps | | aprim | - | 200 TV
lines/pic | Operation
Range
5-12000
f-c | | | | erimic | *Experiment S-177. | * | Experiment 5-178. | | Ö. | f and LM pho | ***CM and LM photography combined. | ned. | | | | | 4 #### Lunar Surface TV Camera The RCA television camera (LM4 in Table 1) used on the lunar surface could be operated from three different positions -- mounted on the LM modularized equipment storage assembly (MESA), mounted on a tripod and connected to the LM by a 30.5-m cable, and installed on the LRV with signal transmission through the lunar communication relay unit (rather than through the LM communications system as in the other two modes). While used on the LRV, the camera was mounted on the ground controlled television assembly (GCTA). The camera could be aimed and controlled by the astronauts or remotely controlled by personnel in the Mission Control Center. Remote command capability included camera "on" and "off," pan, tilt, zoom, iris open/close (f/2.2 to f/22), and peak or average light control. The scanning rate for the RCA camera was the commercial 30 fps, 525 scan lines/frame, and scan
conversion for black and white monitors was not required. The resolution of the camera was 200 TV lines/picture height (limited by S-band equipment) with an aspect ratio of 4:3 and a range of operation from 5 to 12,000 f-c. Color was achieved by using a rotating disc driven by a synchronous 600-rpm motor. Lunar color scenes were scanned, field sequentially, and down-linked serially to the Manned Space Flight Network (MSFN). Video was received and recorded from lunar distances at any of the three Deep Space Stations: Goldstone (California), Madrid (Spain), and Honeysuckle (Australia). Color conversion was required at the Manned Spacecraft Center (MSC) in order to provide commercial standard signals for display monitors. # Orbital Photographic Equipment - The SIM Bay Cameras The main photographic tasks during orbit were performed with cameras in the SIM. In the SIM bay were two photographic packages: the mapping camera system (SIM2, 3, 4 in Table 1) and the panoramic camera (SIM1 in Table 1). #### Mapping Camera System The purpose of the mapping camera system was to obtain photographs of high geometric precision of all lunar surface features overflown by the spacecraft in sunlight. This camera system consisted of a 76-mm (3-in.) Fairchild mapping camera (SIM3) using 5-in. film, a 3-in. stellar camera using 35-mm film, and a laser altimeter. The electrically operated system was powered by 115 v, 400 Hz AC, and 28 v DC spacecraft power. A control panel in the CM provided for on/off/standby, track extend/retract, and image motion switches. The mapping camera system flight plan was devised to provide 78% overlap between successive images photographed in the same pass, when the spacecraft was at the altitude at which the velocity/height (V/H) sensor was set, and approximately 55% sidelap between adjacent photographic passes; the stellar camera (SIM4) provided attitude information; and the laser altimeter (SIM2) provided measured distance from spacecraft to lunar surface in synchronism with each mapping camera exposure. The 78% overlap provided stereo coverage that can also be used for topographic information. The Apollo 15 mapping camera always operated at maximum aperture, varying the shutter speed to control exposure. The shutter consisted of a pair of continuously rotating disks and a capping blade. An exposure was made when the holes in the rotating disk came into line while the capping blade was turned to the open position. To ensure the geometric precision of successive photographs, the film was held in a plane during exposure, at a fixed distance from the lens nodes, through the use of a glass stage plate with a reseau inscribed on its surface. The reseau made it possible to correct every frame for film processing shrinkage and for any local film distortions. In addition, fiducial marks, which defined on the film the location of the optical axis at the instant of the flash, were exposed just outside of the frame format. These extra marks were required to cope with the complications caused by the movement of the stage plate and the film across the optical field during exposure. This motion compensated for the motion of the terrain image. The mapping camera compensated for forward image motion by driving the stage plate in the direction of flight during exposure. A mapping camera frame (4.5- x 4.5-in. photographic area) covers approximately 165 km on a side. The laser altimeter, when operating independently, gave altitude data at a frequency of three data points/min when the mapping camera was off and approximately 2.5 points/min when the camera was on. The laser altimeter operated whenever the camera operated on the light side and also operated independently on the dark side. The altimeter malfunctioned during the orbital mission, and no data were obtained after revolution 38. A complete girth of the moon with the altimeter was acquired on revolution 15/16; sporadic data were recorded otherwise. About 30% of the planned altimeter data were obtained. The stellar camera was mounted on an axis at 96° from that of the mapping camera so that it photographed the sky while the mapping camera photographed the lunar surface. The SM attitude hold during operation for mapping data was confined to the local vertical, with the SIM bay pointed toward the lunar nadir. The inflight pointing accuracy requirement was $\pm 2^{\circ}$ in the three axes; postflight pointing knowledge will be derived from the stellar photographs. Any photography designated "stellar" refers to this photography except that discussed under Special Photography and Experiments. The film cassette containing stellar and mapping photography was removed from the SIM bay by the Command Module Pilot during transearth trajectory and was returned to earth in the Command Module. # Optical Bar Panoramic Camera The purposes of the panoramic camera (SIM1) were to obtain highresolution stereo photography of areas of scientific interest including potential landing sites and near terminator areas. This experiment was designed to provide selective, detailed information to support the photogeometry/cartographic goals of the lunar exploration program. optical bar panoramic camera was comprised of three major assemblies: (1) the roll frame assembly, which basically provided the platform for the rotating lens system; (2) the gimbal structure assembly, which rocked the roll frame assembly back and forth to provide for stereo photography and to compensate for the forward motion of the vehicle; and (3) the main frame assembly, which attached to the vehicle and provided a platform for the film transport system as well as for the roll frame and gimbal structures. The lens was an eight-element, fieldflattened Petzval type. Two mirrors folded the 24-in. (610-mm) focal length into a more compact configuration, and the camera had a relative aperture of f/3.5 and field of view (FOV) of 10.77° (20 km of surface at 100-km altitude). The lens was rotated about an axis parallel to the SM, and a capping shutter opened during the time the lens passed through a 108° arc (320 km of lunar surface at 100-km altitude) below the vehicle. The light admitted was focused through a variable width slit from a minimum opening of 0.38 mm to a maximum of 7.6 mm. The slit width and scanning rate (rate of rotation of the lens) established the photographic exposure time. The gimbal structure, to which the roll frame assembly was attached, provided for both forward motion compensation (FMC) and stereo coverage by rocking forward and aft along the axis of vehicle travel. This structure provided FMC by moving in the direction of apparent ground motion at the exact rate necessary to "freeze" the image, thus avoiding a blurred image. In the stereo mode, the gimbal structure automatically pitched from a position 12.5° forward to 12.5° aft of the vertical between successive exposures, and the cycle rate (4.7 to 8.9 sec) was set so that 100% overlap between stereo pairs separated by five frame numbers (e.g., frames 1 and 6) was maintained and provided a 25° convergent stereo image. There is 10% overlap between successive forward or aft photographs (e.g., frames 1 and 3). The V/H sensor continuously determined the rate of apparent motion of the ground scene, controlling both the motion of the gimbal structure for FMC and the speed of rotation of the lens system (optical bar). The optical bar also controlled the speed of film transportation. A light meter together with the V/H sensor determined the slit width and hence the proper exposure of the film. The main frame supported the other structures, the film supply, and the takeup mechanism. The film takeup cassette was removed from the panoramic camera by the Command Module Pilot during transearth trajectory, and this cassette was returned to earth in the Command Module. The width of the film was 12.7~cm (5-in.), with a frame format of 11.25~x 112.5~cm (4.5 x 45 in.) corresponding to an area (at 106~km altitude) of 20.5~x 322~km (12~x 183~n.m.) on the lunar surface. The panoramic camera was mounted on rails that were attached to shelves in the SIM. During camera operation, it was required that the SM positive X axis be in the direction of the velocity vector. The camera and lens assembly was maintained within the optimal resolution temperature constraint limits of 85° to 96° F during operation and between the 10° to 120° F constraint during non-operation times. The camera was thermally isolated from the SIM structure. External contaminants could not be tolerated either by the panoramic or the mapping camera assemblies. Mass spectrometer and gamma-ray spectrometer booms on the SM were normally retracted while the panoramic and metric cameras were in operation. # Orbital Photographic Equipment - Command Module Cameras Various photographic tasks were also accomplished using four Command Module cameras: a 70-mm Hasselblad electric camera (HEC) (CM1 in Table 1), a 16-mm Maurer DAC (CM2), a 35-mm Nikon (CM3), and a Westinghouse color TV camera (CM4). ## 70-mm Hasselblad Electric Camera The 70-mm Hasselblad electric camera (CM1 in Table 1) was used during rendezvous and docking operations and during translumar coast (TLC) and transearth coast (TEC) to photograph the earth and the moon. It was also used to acquire dim light, earthshine, and UV photographs (using a 105-mm lens). This Hasselblad camera had a motor-driven mechanism that was powered by two sealed nickel-cadmium batteries. The mechanism advanced the film to the next frame and cocked the shutter whenever the camera was activated. The normal 80-mm lens could be easily replaced with a 105-mm, 250-mm, or 500-mm lens. The astronauts brought back (unscheduled) the 500-mm-lens HDC camera from the lunar surface and took some photographs from the Command Module. # 16-mm Data Acquisition Camera The 16-mm DAC (CM2 in Table 1) was used to record the following: transposition and docking, LM ejection, docking and undocking
operations, LM jettison, the earth and moon during the TLC and TEC phases, reentry, spacecraft interior activities, dim light and gegenschein, and the SIM bay EVA. This camera, which was a duplicate of the 16-mm DAC used in the Lunar Module, was equipped with 10-, 18-, and 75-mm lenses. # 35-mm Nikon Camera The 35-mm Nikon camera (CM3 in Table 1) was selected to obtain photographs of the libration point, L4, and of the gegenschein at the antisolar point, at the Moulton point (gravitationally stable point in the earth-sun system), and at a point midway between. The camera was mounted in the right-hand rendezvous window and periodically made time exposures during the dark portion of the lunar orbit. The purpose of the experiment was to determine whether, and to what extent, reflection from dust particles at the Moulton point contributes to the gegenschein. The gegenschein region was not acquired, but, instead, the camera photographed another part of the Milky Way as a result of a translation error in coordinates from the ground. The libration point region, L4 (trailing stable point in the earth-moon gravitational system), was acquired. Four cassettes of film (125 frames) were exposed, one of which was devoted to calibration data; part of another was used for the earthshine photography. #### Command Module TV Camera A Westinghouse color television camera (CM4 in Table 1), used in the Command Module, could be hand held or bracket mounted. The scanning rate for the camera was the commercial 30 fps, 525 scan lines/ frame. The resolution of the camera was 200 TV lines/picture height (limited by S-band equipment) with an aspect ratio of 4:3 and a range of operation from 5 to 12,000 f-c. The camera was operated at variable f-stops from 4 to 44 using a zoom lens. A 5-cm black and white video monitor, which could be velcro-mounted on the camera or at various locations in the Command Module, aided the crew in focus and exposure adjustment. A camera ringsight also aided in directing the lens at the desired target. # SPECIAL PHOTOGRAPHY SEQUENCES AND EXPERIMENTS From the Command Module during the transearth coast from the moon, two series of Hasselblad electric camera (CM1) and 35-mm camera (CM3) photographs were obtained during lunar eclipse on August 6. The 250-mm lens camera was used (hand held) in the right rendezvous window for the first two and last two photos of the series, and the 80-mm lens camera was used for all the other photos of the eclipse. The 35-mm camera was mounted with a light shield in the right-hand rendezvous window. Each series consisted of six photos. The first series was obtained between 20 min and 10 min after the earth fully occulted the moon, and the other series was obtained during the interval 10 to 20 min after the moon began to leave the earth's umbra. Two sets of Hasselblad photographs of the star field RTCC 61 (Shaula) (not to be confused with the stellar photography obtained by the mapping camera system) at 18 hr 28 min in R.A. and -37° 10' δ were obtained during TEC with the camera connected by an optical adapter to the CM sextant optics. Each set consisted of four photos, obtained sequentially, with exposure times of 60 sec, 20 sec, 5 sec, and 1 sec. One was obtained with the sextant optical axis approximately 90° to the spacecraft/sun line, and one was obtained when the system optics was shaded from the sun by the CM. Two additional sets were also obtained. During lunar orbit, the 35-mm Nikon camera (CM3) was used to obtain a series of photos of the lunar libration region, L4. Exposure times were 240 sec, 90 sec, and 30 sec. The libration point was located at R.A. 23 hr, 13 min, δ -1.83°. The 35-mm camera was also used by the CM pilot to obtain 23 photos of the zodiacal light as the CM approached sunrise. The Hasselblad electric camera (CM1) with 80-mm and 250-mm lenses was used to photograph 10 terminator crossings. The camera was pointed vertically downward at the same time that the terminator was being photographed by the SIM cameras. The camera was commanded by the intervalometer set for stereo with 55% to 60% overlap and started at 1 min before terminator crossing until 40 sec after. These photographs are on Magazine R. Earthshine photos were obtained during one pass (revolution 34) using the 35-mm camera, starting I min after passing the terminator, for a period of 7 min with changes of exposure from 1/15 sec to 1/8 sec and the cabin lighting reduced. About 15 frames were obtained. Low-resolution black and white photos of particular areas of the lunar surface were obtained using the hand held Hasselblad electric camera with the 80-mm lens. For this experiment, this camera was bracket-mounted with no attitude maneuvers during this sequence. The frame cycle rate was set to provide 55% to 60% forward overlap. Medium-resolution photos of particular regions were obtained with this camera using the 250-mm lens. Some unscheduled high-resolution photos were taken using a 500-mm Hasselblad data camera that was taken back to the Command Module by the LM astronauts after lunar surface EVA. The UV photography experiment (S-177) was designed to obtain ultraviolet photographs of the earth and moon for use in studies of planetary atmospheres and short wavelength lunar radiation. The experiment package consisted of the Hasselblad electric camera (CM1) mounted behind the right-hand window (constructed of fused quartz) of the Command Module. When black and white film was being used, the camera was fitted with a 105-mm lens (lens c) and an assembly that contained two UV filters with passbands at 2600 A and 3750 A to cover different portions of the UV spectrum and another filter to admit visible radiation. Color photography was obtained using an 80-mm lens and the visible spectrum filter. Although one magazine of good photographs was obtained, the experiment was only partially successful because the 2600-A filter had a light leak at 3400 A, which affected the 2600-A area. The photographs taken using filters through the 3750-A and the visible passband were of good quality. These photographs are not yet deposited at NSSDC. ## PHOTOGRAPHIC COVERAGE AND QUALITY The orbital and surface photography obtained during the mission of Apollo 15 was of high quality. The best resolution of the Apollo panoramic photographs is very nearly the same as the best high-resolution pictures of the Lunar Orbiter 2 and 3 missions. In addition, the Apollo photographs are devoid of the raster lines and framelet divisions that marked the Lunar Orbiter photographs. The lunar surface resolutions of the mapping and panoramic cameras, respectively, were about 20 m and 1 to 2 m. Some of the Apollo photographs (mapping and panoramic) show features very near and into the terminator. Of interest, also, is the change of the sun elevation by approximately 35° at any point on the lunar surface during the course of the mission. Thus, the effect of the sun angle on reflectivity can be studied. Photographs were taken in orbit from the Command Module, during standup EVA (SEVA) from the LM, and during EVA excursions. (Refer to Table 1 to review the cameras and film types used for the photographic tasks.) The film coverage from surface exploration using Hasselblad cameras is summarized in Table 2. A summary of the mapping camera photography, which, generally, was of excellent quality, can be seen in Table 3. Figure 1 (in Appendix B of this document) illustrates the surface track coverage of this camera. (Note: all illustrations and samples of photographic supporting data are given in Appendix B.) Major deviations of the mapping TABLE 2 HASSELBLAD SURFACE PHOTOGRAPHY SUMMARY* | EVA | MAG. | FILM | 60-r
(FRAMES I | | (FRA | 500-mm
AMES INCLU | SIVE) | NO. OF
FRAMES | |---------------------|----------------------------------|--|----------------------------|---|------|----------------------|-------|--| | SEVA** | LL
KK
MM | B/W
Color
B/W | 11353-
11730- | | | 11235-11249 | | 45
29
15
89 | | EVA 1 | LL
NN
MM | B/W
Color
B/W | 11398-
11530- | | | 11254-11291 | | 74
74
38
186 | | EVA 2 | NN
LL
MM
PP
KK
OO | Color
B/W
B/W
B/W
Color
B/W | 11472-
12179-
11759- | 11604-11694
11472-11529
12179-12248
11759-11860
12406-12451 | | 11292-11349 | | 91
59
58
70
102
46
426 | | EVA 3 | TT
WW
SS | Color
B/W
B/W | 11861-11930
11047-11203 | | | 12015-12178 | | 70
164
157
391 | | Post EVA
from LM | PP
TT
SS | B/W
Color
B/W | 11931-11954
11204-11217 | | | 12249-12266 | , | 18
24
14
56 | | Category | Total F | rames | Mag. | Total Frames | | Mag. | Tot | al Frames | | Frames | 114 | -8 | | | | | | | | 60-mm
500-mm | 85
29 | | LL
KK | 178
131 | | PP
OO | | 88
46 | | Color
B/W | 39
75 | | MM
NN | 111
165 | | TT
WW
SS | | 94
164
171 | ^{*}Data from MSC Apollo 15 Index of 70-mm Photographs; see Table 5 for corresponding frame numbers for ordering purposes. **SEVA is standup extravehicular activity. TABLE 3 SUMMARY OF MAPPING CAMERA PHOTOGRAPHY | REV | MODE | NASA PHOTO | NO. | ST | ART | S | ГОР | |-----|------------------|------------|--------|------------|-------------|------------|---------------| | REV | MODE | NO. AS15- | FRAMES | LAT. (deg) | LONG. (deg) | LAT. (deg) | LONG. (deg) | | 4 | Vert | 0070-0103 | 34 | 25.5S | 179.0E | 17.5S | 143.5E | | 15 | Vert | 0104-0161 | 58 | 19.5S | 140.5E | 10.0N | 73.5E | | 16 | Vert | 0278-0427 | 150 | 25.5S | 170.5E | 25.5N | 14.0W | | 22 | Vert | 0457-0602 | 146 | 25.0S | 161.5E | 25.0N | 18.0W | | | Fwd. | | | | | | | | 23 | Oblique | 0753-0869 | 117 | 21.5S | 137.5E | 24.5N | 20.0W | | 27 | Vert | 0870-1013 | 144 | 25.0S | 153.5E | 25.5N | 23.5W | | 33 |
Vert
Aft | 1014-1161 | 148 | 25.0S | 150.0E | 25.5N | 31.5W | | 34 | Oblique
North | 1309-1428 | 120 | 25.08 | 155.0E | 26.0N | 7.5W | | 35 | Oblique | 1429-1559 | 131 | 21.5S | 147.5E | 29.0N | 31.0W | | 38 | Vert | 1560-1703 | 144 | 25.5S | 145.5E | 25.0N | 32.5W | | 44 | Vert | 1704-1851 | 148 | 25.0S | 139.0E | 25.0N | 40.0W | | 50 | Vert | 1852-1945 | 94 | 26.0S | 126.0E | 23.0N | 15.0E | | 60 | Vert | 1946-2091 | 146 | 27.5S | 123.5E | 27.5N | 56.5W | | 62 | Vert | 2093-2205 | 113 | 14.5S | 81.0E | 28.0N | 57.0W | | 63 | Vert | 2206-2350 | 145 | 28.0S | 120.0E | 27.5N | 59.5W | | 70 | Vert | 2351-2493 | 143 | 27.0S | 113.0E | 27.5N | 67.0₩ | | | South | | | | | | | | 71 | Oblique | 2494-2623 | 130 | 29.0S | 107.5E | 24.5N | 68.0 W | | 72 | Vert | 2624-2752 | 129 | 26.5S | 108.5E | 27.5N | 68.0 W | | | | TOTAL | 2240 | | | | | camera (SIM3) from the nominal were as follows. On revolution 23, the forward oblique strip was flown with a spacecraft attitude that introduced 17° yaw in the camera orientation. The photo pass on revolution 62 was made with the gamma-ray and mass spectrometer booms extended. The quality of the panoramic camera photography also was generally excellent. A summary of the photography from this camera is given in Table 4. Figure 2 illustrates the pan camera surface track coverage. Telemetry readouts showed that the panoramic camera V/H sensor gave spurious readings at erratic intervals, which affected the forward motion compensation. More than 90% of the photographs show no degradation, and degradation for most of the others is nearly undetectable. A few frames show density banding as a result of this malfunction. Photogrammetrists should be aware that where spacing between timing marks at the bottom of the frames changes abruptly within a frame, there is a corresponding change in photographic scale. The majority of the panoramic and mapping camera photographs have stereo companions. The amount of photographic coverage from this mission is several times more than that acquired during any previous mission. The quantity of photographs as well as the size of the panoramic photography precludes the possibility of cataloging the photographic data in the form of paper prints as has been done in the past (Apollo 11 through Apollo 14). Instead of including the complete printed photographic catalog with this Data Users' Note, we are presenting in Appendix B a few representative photographs (see Figure 3) from each of the principal cameras to show the quality and format of the photographic coverage. These photographs are representative of the Hasselblad photography on the lunar surface taken with both the 60- and 500-mm lenses, the Command Module orbital Hasselblad coverage with the 80-, 250-, and 500-mm lenses, and the photographs obtained by the mapping (metric) and panoramic cameras. Samples from each of the latter two cameras show the same lunar region to allow a comparison of the coverage obtained with the two types. Some Hasselblad panoramic mosaics of the surface are also shown. The photographic catalogs are available in microform. All of the Hasselblad photography is available on microfiche (60 frames/card) and as 16-mm roll film. A microfilm (35-mm) catalog includes all panoramic camera coverage. The mapping camera photography is also available on microfiche and as 16-mm roll film. These catalogs can be obtained from NSSDC, and from them, the user can select the frames desired for analysis. TABLE 4 SUMMARY OF PANORAMIC CAMERA PHOTOGRAPHY* | REV | MODE | NASA PHOTO | NO. | ST | ART | S | ТОР | |-----|--------|------------|--------|------------|-------------|------------|-------------| | KLV | MODE | NO. AS15- | FRAMES | LAT. (deg) | LONG. (deg) | LAT. (deg) | LONG. (deg) | | 4 | Vert | 8844-8857 | 14 | 25.0S | 178.5E | 24.0S | 170.0E | | | Stereo | 8858-8944 | 87 | 23.5S | 168.5E | 17.0S | 142.0E | | 15 | Stereo | 8945-9087 | 143 | 19.0S | 139.0E | 2.0S | 99.5E | | 15 | Vert | 9088-9118 | 31 | 2.0S | 99.0E | 5.0N | 83.0E | | 15 | Stereo | 9119-9151 | 33 | 5.0N | 83.0E | 10.0N | 73.0E | | 16 | Stereo | 9152-9424 | 273 | 9.0N | 75.0E | 25.0N | 14.5W | | 27 | Stereo | 9425-9433 | 9 | 25.5N | 4.0E | 26.0N | 1.0E | | 33 | Stereo | 9434-9578 | 145 | 5.5N | 66.5E | 21.5N | 23.0E | | 38 | Stereo | 9579-9767 | 189 | 23.0S | 132.0E | 2.5S | 76.5E | | 38 | Vert | 9768-9790 | 23 | 3.0S | 77.0E | 3.5N | 66.0E | | 38 | Stereo | 9791-9808 | 18 | 24.5N | 4.5E | 25.0N | 1.5W | | 50 | Stereo | 9809-9827 | 19 | 25.5N | 3.5E | 27.5N | 3.0W | | 60 | Stereo | 9828-9919 | 92 | 8.0N | 39.0E | 21.0N | 11.0E | | 60 | Vert | 9920-9929 | 10 | 23.0N | 4.5E | 25.5N | 4.0W | | 61 | Vert | 9930-9933 | 4 | 24.5N | 0.5W | 25.0N | 2.0W | | 61 | Stereo | 9934-9941 | 8 | 25.5N | 3.5W | 26.5N | 6.0W | | 63 | Stereo | 9942-0092 | 151 | 25.0S | 109.5E | 6.5S | 64.0E | | 63 | Vert | 0093-0116 | 24 | 7.5S | 65.5E | 0.5S | 52.0E | | 63 | Stereo | 0117-0165 | 49 | 0.0 | 51.5E | 7.5N | 37.5E | | 72 | Stereo | 0166-0357 | 192 | 17.5N | 8.0E | 28.5N | 57.5W | | 72 | Vert | 0358-0372 | 15 | 28.5N | 58.5W | 27.5N | 67.5W | | | | TOTAL | 1529 | | | | | ^{*}From A-15 Index of Mapping and Panoramic Camera Photography. Enclosed in this data package are 10 photo index maps for the Apollo 15 mission. Sheet 1 shows panoramic camera coverage, sheets 2 through 6 show mapping camera coverage, sheets 7 and 8 show the areas photographed in black and white using the Hasselblad cameras, and sheets 9 and 10 show the areas of Hasselblad color coverage. Sheet 10 also shows the areas photographed on 16-mm film strips. # FORMAT OF AVAILABLE PHOTOGRAPHIC AND SUPPORTING DATA The Apollo 15 films on file at NSSDC include second generation master positive copies of the original (first generation) 70-mm, 35-mm, 16-mm, mapping, panoramic, and stellar films that are stored at the NASA Manned Spacecraft Center. NSSDC also has reversal second generation negatives made from the original (first generation) film for the panoramic and mapping photography. NSSDC has produced working duplicates (third generation) of the films received from the Manned Spacecraft Center for servicing requests with fourth generation photographs. NSSDC can provide the photographs and the related supporting data in the formats described in the remainder of this section. Investigators should complete the order form at the end of this Data Users' Note to specify the data they require. # 70-mm Hasselblad Photography Seventeen magazines, or approximately 2400 frames, of Hasselblad photos were exposed during the Apollo 15 mission. A summary, by magazine, of the Hasselblad photography available from NSSDC is given in Table 5. Individual black and white frames, 52 x 52 mm in image area, can be produced as positive or negative contact film duplicates on 4- x 5-in. film sheets or as enlarged 8- x 10-in. prints. (Enlargements in various other format sizes will be prepared in response to special requests.) Complete magazines or complete sets of Hasselblad photography can be produced as positive or negative contact film duplicates (70-mm roll film) or as positive contact paper prints (70-mm roll paper). Color reproductions in the form of positive or negative contact film copies on 4- x 5-in. film sheets will be provided only to those persons performing specific detailed scientific investigations. Requests should specify the complete frame number, e.g., AS15-85-11353, for each photograph requested. NSSDC has available one-line indexes that give frame parameters such as longitude and latitude of the principal point, sum elevation, approximate altitude of the spacecraft, general mission activity at the time the photograph was taken, and outstanding features of the photographs. These indexes, on 16-mm microfilm or on microfiche, are available in three orders of listing: (1) all photographs are listed ${\bf TABLE~5}$ NSSDC INVENTORY FOR PANORAMIC, MAPPING, AND HASSELBLAD PHOTOGRAPHY # PANORAMIC | CAN (MAGAZINE) NO. | FRAME NO. | CAN (MAGAZINE) NO. | FRAME NO. | |--------------------|----------------|--------------------|-----------| | 1 | 8801-8892 | 10 | 9620-9710 | | 2 | 8893-8983 | 11 | 9711-9800 | | 3 | 8984-9074 | 12 | 9801-9891 | | 4 | 9075-9165 | 13 | 9892-9982 | | 5 | 9166-9255 | 14 | 9983-0073 | | 6 | 9256-9346 | 15 | 0074-0164 | | 7 | 9347-9437 | 16 | 0165-0255 | | 8 | 9438-9528 | 17 | 0256-0346 | | 9 | 9529-9619 | 18 | 0347-0372 | | YW1 | Pan Terminator | | | # MAPPING | CAN (MAGAZINE) NO. | FRAME NO. | |--------------------|--------------------| | 1 | 0002-0679 | | 2 | 0680-1428 | | 3 | 1429-2205 | | 4 | 2206-2929 | | 5 | 2930-3376* | | YV1 | Mapping Terminator | ^{*}Distant views of moon; not scientifically useful. # HASSELBLAD | | COLOR (CAN NO. 1) | *** | |--|--|--| | MAGAZINE | DESIGNATION | FRAME NO. | | NN
KK
TT
M
P
Q
O | AS15-86
AS15-87
AS15-88
AS15-91
AS15-93
AS15-96
AS15-97 | 11530-11694
11695-11860
11861-12014
12329-12405
12577-12736
13003-13136
13137-13298 | | | BLACK AND WHITE (CAN NO. | 2) | | QQ
SS
MM
LL
WW
PP
OO
S
RR
R | AS15-81
AS15-82
AS15-84
AS15-85
AS15-89
AS15-90
AS15-92
AS15-94
AS15-95
AS15-98 | 10869-11046
11047-11217
11235-11352
11353-11529
12015-12178
12179-12328
12406-12576
12737-12869
12870-13002
13299-13401 | in sequence by photo number (see Figure 4); (2) lunar surface photographs are listed in chronological order within categories (e.g., EVA 1, EVA 2, etc.) (see Figure 5); and (3) photographs of the lunar surface taken from lunar orbit are cross-indexed by longitude in 10° increments (see Figure 6). These indexes
will routinely be provided as 16-mm roll film duplicates when complete magazines or sets of photography are requested. Microprinter paper copies of the index data will be provided when requests are received for selected individual frames. More complete supporting data listing corner coordinates of the picture frame, refined spacecraft position, and other spacecraft and lunar data were not available at the time of this writing. #### Panoramic Hasselblad Mosaics The panoramic series of Hasselblad photographs has been assembled into mosaics that are now portrayed on 4- x 5-in. film. Table 6 lists the mosaics by assigned number, area designation, brief description, and number of individual frames comprising each mosaic. The assigned number (column 1) is the number by which the mosaic should be ordered from NSSDC. Note that 21 of the mosaics are color photographs and 58 are black and white. Reproductions may be requested in the form of 4- x 5-in. positive or negative contact film duplicates or as enlarged paper prints. The mosaics have been included in the 16-mm microfilm (or microfiche) Hasselblad catalog. # 35-mm Nikon Photographs The complete set of available Nikon photographs consists of 125 useful frames. The complete set can be obtained as contact negative or positive copies on 35-mm roll film. Individual frames can be requested as $8- \times 10-in$. paper print enlargements or as $3-1/4- \times 4-in$. or $2- \times 2-in$. slides. The index to this film set is not yet available. # Mapping Camera Photographs Individual frames (ordered by frame number, e.g., metric AS15-0076) from the mapping (metric) camera can be obtained as 5-x 5-in. negative or positive contact film, as positive contact paper prints, or as 8-x 10-in. paper enlargements. (Enlargements in various other format sizes will be prepared in response to special requests.) The 4.5-x 4.5-in. image area on the film will give an image area of approximately 7.5-x 7.5-in. on the 8-x 10-in. enlargements, or an enlargement factor of 1.6 over the original film format. Separate magazines or the complete set of mapping photography can be obtained as contact positive or negative film on 5-in. rolls or as 5-in. roll contact paper prints. There are five magazines containing 2240 useful frames in TABLE 6 SUMMARY OF PANORAMIC MOSAICS | NSPARENCIES | |-----------------------| | | | IREN | | | | TRAIN | | COLOR | | - 4 X 5-IN. COLOR TRA | | | | SURFACE MOSAICS | | RFACE | | '0-mm SU | | 15 7 | | APOLLO | | | TION FRAMES IN MOSAIC | n ₂ 6 | an ₂ 5 | Pan ₂ 5 | 4 | | rtial Pan) 5 | 11 6 | ~^\ | m ₃ 5 | 3 | rames | REMARKS | | ronaut | | | | | | | | | | | |--|-------------------------------|------------------------|-------------------|---------------------------|-----------------------|---------------------------|----------------------|-------------|--------------|------------------|--------------------------|------------------------------|--|---------------------------------------|---------------------------|----------------------|----------------------|----------------------|---------------------------------------|------------------------|-------------------------|--------------------------|-------------------------|---------------------------|------------------------| | | DESIGNATION | ALSEP Pan ₂ | LM East Pan 2 | LM North Pan ₂ | SEVA Pan ₃ | LM North Pan ₃ | Stop 3 (Partial Pan) | SEVA Panı | LM East Pan3 | ALSEP Pan3 | Stop 6 | 21 Mosaic Strips, 110 Frames | The second secon | Rill, Rover | Rover, astronaut | | | Tracks | | | | Rover | | | | | *************************************** | MOSAIC FRAME NUMBER | S-71-44699 | S-71-44700 | S-71-44701 | S-71-44702 | S-71-44703 | S-71-44704 | S-71-44705 | S-71-44706 | S-71-44707 | S-71-47236 | TOTAL = 21 Mo | NUMBER OF FRAMES
IN MOSAIC | 9 | 5 | 5 | 6 | 9 | 7 | 9 | ~ | | 6 | 'n | | | Lucusius Comments Com | NUMBER OF
FRAMES IN MOSAIC | 2 | 6 | 4 | 9 | 9 | S | 9 | 5 | \$ | 5 | 4 | NUMBE | 7.1 | 13 | | | | 12 | | | 13 | | 23 | 23 | | | DESIGNATION | Rover "Rip" Pan3 | LM Window Mosaic | Rover "Rip" Pan, | Rover "Rip" Pan2 | LM West Pan2 | LM North Pan | LM West Pan | ALSEP Pan | LM East Pan | LM West Pan ₃ | SEVA Pan ₂ | DESIGNATION | Stop 2, St. George No. 2 ₁ | Stop 2, St. George No. 13 | Stop 6A ₃ | Stop 6A ₂ | Stop 6A ₁ | Stop 2, St. George No. 1 ₂ | Stop 2, St. George No. | Stop 7, Spur Crater Pan | Stop 7, Spur Crater Pan3 | Stop 7, Spur Crater Pan | Stop 2, St. George No. 23 | Ston 7 St George No 22 | | | MOSAIC FRAME
NUMBER | S-71-43940 | S-71-43941 | S-71-43942 | S-71-43943 | S-71-44692 | S-71-44693 | S-71-44694 | S-71-44695 | S-71-44696 | S-71-44697 | S-71-44698 | MOSAIC FRAME NUMBER | S-71-45906 | S-71-45907 | S-71-45908 | S-71-45909 | S-71-45910 | S-71-45911 | S-71-45912 | S-71-45913 | S-71-45914 | S-71-45915 | S-71-45916 | 671 45017 | APOLLO 15 70-mm SURFACE MOSAICS — 4 X 5-IN. B/W TRANSPARENCIES | | | | | | | | | | | | | | | ************ | | | | *************************************** | | | | | | | | | | | | | ****** | |-------------------------------|-------------------|---------------|-------------------------|-------------------------|------------------------|------------|-------------|-----------------------------|------------------------------|------------------------|--|------------------------|----------------------|-------------------|-------------------|--------------------------------------|------------------|---|---------------------------------------|--------|----------------------|----------------------|-------------------|------------|-------------------|---------------------------|----------------------|----------------------|-------------------|-------------|------------------------| | REMARKS | St. George Crater |) | Mountain shows layering | Mountains in background | • | | | Hadley
Delta, Spur layering | Antenna, mountains in shadow | LM, Spur, Hadley Delta | Hadley Delta layering, St. George Crater | Rover, astronaut | Rover, astronaut | Shows layers | Shows lavering | Hadley Rill in background, mountains | heavily shadowed | Hadley Delta, Spur, Rover, astronaut | Hadley Rill, Hadley Delta, St. George | Crater | | | | | Hadley Delta | Hadley Delta, Spur, Rover | • | | | | Rover | | NUMBER OF FRAMES
IN MOSAIC | 4 | 7 | 7 | 5 | 9 | 9 | 9 | 8 | \$ | 9 | ς. | r- | 4 | 6 | ∞ | 9 | | 9 | 9 | | 9 | 9 | 8 | 6 | 4 (+1 blank) | . 9 | · · · | · · | 9 | 9 | 9 | | DESIGNATION | LM Window Pan | Pluton Crater | Dune Crater2 | Scarp Pan ₁ | Scarp Pan ₃ | Scarp Pan2 | ALSEP Pan 1 | SEVA Pan ₂ | SEVA Pan 1 | ALSEP Pan ₂ | SEVA Pan ₃ | Elbow Pan ₃ | Stop 10 ₁ | EVA 3 rill mosaic | EVA 3 rill mosaic | Elbow Pan ₁ | | ALSEP Pan ₃ | Stop 10 ₃ | | Stop 10 ₂ | Partial Pan from LRV | West Pan, Stop 62 | Elbow Pan2 | West Pan, Stop 61 | Stop 9A2 | Stop 9A ₁ | Stop 9A ₃ | West Pan, Stop 63 | ALSEP Pan 1 | ALSEP Pan ₃ | | MOSAIC FRAME
NUMBER | S-71-47078 | S-71-47079 | S-71-47080 | S-71-47579 | S-71-47580 | S-71-47581 | S-71-47582 | S-71-47583 | S-71-47584 | S-71-47585 | S-71-47586 | S-71-47589 | S-71-47590 | S-71-47591 | S-71-47592 | S-71-47593 | | S-71-47594 | 8-71-47595 | | S-71-47596 | S-71-47597 | S-71-47598 | S-71-47599 | S-71-47600 | S-71-47602 | S-71-47604 | S-71-47606 | S-71-47607 | S-71-48513 | S-71-48514 | TABLE 6 (continued) APOLLO 15 70-mm SURFACE MOSAICS — 4 X 5-IN. B/W TRANSPARENCIES | MOSAIC FRAME
NUMBER | DESIGNATION | NUMBER OF FRAMES
IN MOSAIC | REMARKS | |---------------------------------|-------------------------------|--|--| | S-71-48515 | ALSEP Pan2 | 9 | Astronaut, LM | | S-71-48516 | Stop 10, R3, | formet | Hadley Rill | | S-71-48517 | Stop 10, R3, | 7 | Hadley Rill | | S-71-48518 | Stop 10, R5, | 7 | Hadley Rill | | S-71-48519 | Stop 10, R5, | 7 | Hadley Rill | | S-71-48520 | R3, Stop 9a rill mosaic 2 | 10 | Hadley Rill | | S-71-48521 | R6, Stop 9a rill mosaic 1, R3 | ∞ | Hadley Rill | | S-71-48522 | Stop 10, R4 | Ŋ | Hadley Rill | | S-71-48523 | Hadley mosaic, Stop 10 | | Hadley Rill | | S-71-48524 | Stop 9a, rill mosaic, R11 | Ŋ | Hadley Rill | | S-71-48525 | Stop 10, R7 | C) | Hadley Rill | | S-71-48526 | Stop 9a, rill mosaic, R7 | 7 | Hadley Rill | | S-71-48874 | Stop 2, R ₁ | ************************************** | Hadley Rill | | S-71-48875 | Stop 6A, Mt. Hadley | 0 | | | S-71-48876 | SEVA, Hill 305 | r. | | | S-71-48877 | Stop 6A, Hadley Delta | ζ. | менаманенененененененененененененененене | | TOTAL = 58 mosaic strips, 382 f | aic strips, 382 frames. | | | this photography (see Table 5). In addition, there is one 500-ft roll in which all of the near-terminator photographic coverage has been collected. Reproductions from this magazine can be obtained in the above mentioned formats. The mapping camera supporting data are available on 16-mm microfilm. A sample of the data for a frame is given in Figure 7. In addition, a one-line index of all frames on 16-mm microfilm or microfiche is available for the mapping camera photography. A sample of this index can be seen in Figure 8. The parameters listed for each frame are: orbit revolution number; approximate spacecraft altitude; latitude and longitude (in deg) of the principal point (center) of the frame; tilt and azimuth of the camera; percent of forward overlap between successive frames; sun elevation (in deg); and a brief description of features contained. The frame numbers of the mapping photographs start with 0002. The full index is preceded by a summary of the mapping and panoramic photographic coverage. Users will receive paper prints of the index and supporting data frames appropriate for the photographs requested. In cases of requests for an entire roll of film, film copies of supporting data will be supplied to the requester (16-mm roll film). Although NSSDC has on deposit the 35-mm stellar photography (approximately 3350 frames) from the mapping-stellar-laser altimeter camera system, it should be emphasized that the stellar photographs are of little or no use for scientific purposes as required by the general user of NSSDC data. They are being used by the experimenters for selenodetic purposes to determine spacecraft attitude more accurately. NSSDC has no supporting data available to accompany the stellar photography, and the frames have no number designations from which individual selections could be made by the requester. In addition, many of the frames have been degraded by dirt or dust. # Panoramic Camera Photographs NSSDC has all 18 rolls of panoramic photography, 17 of which contain approximately 90 frames (the 18th has 26 frames) for a total of 1529 useful frames. The image area of each frame is 4.5 x 45 in.; the photographs are stored on 5-in. roll film. A summary of the frame coverage per magazine for the panoramic camera is given in Table 5. In addition, all of the near-terminator photography has been gathered into a single magazine containing 149 frames in the same film format as the complete set of photographs described above. Individual frames (ordered by frame number, e.g., AS15-PAN-8844) can be obtained as 4.5- x 48-in. contact negative or positive film copies on 5-in. film or as contact paper prints on 5- x 48-in. paper. Complete magazines (ordered by magazine number as in Table 5) or a complete set of panoramic photography can be obtained as contact positive roll film or paper or as negative roll film reproductions. Supporting data for the panoramic photographs, in a 16-mm microfilm format, are also available from NSSDC. A sample of the frame supporting data is presented in Figure 9. A one-line index, on 16-mm microfilm and microfiche, of the frames is also available. The index contains information for each frame including: latitude and longitude of the principal point (center) of the frame (in deg), sun elevation (in deg), approximate altitude of the spacecraft, camera attitude, orbit revolution number, the frame number of the accompanying stereo pair, and a brief description of features contained. A sample page of this index can be seen in Figure 10. It should be noted that the frame numbers start with 8844, then pass from 9999 to 0000 rather than 10,000 because the computer program was set for four digits only. The appropriate panoramic camera supporting data and index data will be sent with each request as paper prints (as in Figures 9 and 10). NSSDC will respond to requests for complete magazines or complete panoramic camera photography with 16-mm roll film reproductions of the support data and indexes. # Panoramic Camera Rectified Photographs The panoramic camera photographs will be rectified to remove the geometric effects of panoramic scan and stereo convergence. Only the central 74° of the total 108° scan will be rectified. The rectified version of the panoramic frames, with frame dimensions in a 9- x 72-in. format, will be acquired by NSSDC. An announcement providing detailed information on the rectification process and ordering procedures will be prepared and issued when NSSDC is ready to respond to requests for these photographs. #### 16-mm Maurer Films The 16-mm Maurer films are available as 16-mm positive color film duplicates. Eleven magazines have been spliced together and are available as one 1600-ft reel. The cabin and earth-looking footage has been deleted and has been deposited at the Technology Application Center, Albuquerque, New Mexico. The 16-mm films at NSSDC are not intended for general or classroom use since they are suitable only for precise scientific investigation. They are available on a 3-month loan basis although, in special instances, arrangements can be made for permanent retention. Table 7 summarizes 16-mm Maurer coverage. # 16-mm Television Films The television coverage for the entire mission has been recorded on 16-mm kinescope roll film. Those parts involving the surface activities and liftoff, as shown in the film log in Table 8, are stored TABLE 7 SUMMARY OF MAURER 16-mm COVERAGE | DESIGNATION | CONTENTS | |-------------|---| | A | Earth orbit, flying debris, docking | | В | Lunar orbit undocking (cabin sequences are not available at NSSDC) | | AA | Command Module from Lunar Module, prior to landing on moon | | E | Landing site, Hadley Rill from Command Module in orbit | | EE | Lunar Rover and EVA 2 | | вв | Liftoff from moon | | С | Rendezvous and docking after lunar liftoff | | 11 | Sky, moon's limb, subsatellite release (cabin sequences are not available at NSSDC) | | F | Transearth EVA | | K | Reentry | | J | Chute deployment, splashdown | TABLE 8 16-MM TV KINESCOPE FILM LOG | MSC FILM
ID NUMBER | TIMESPAN
(DAY/HR:MIN (GMT)) | COVERAGE | |-----------------------|--------------------------------|-----------------------| | S71-231 | 207/1701-1709 | Docking with LM | | -232 | 208/2330-2359 | IVT to LM | | -233 | 208/2358-209/0020 | IVT to LM | | -234 | 211/1228-1243 | Landing Site from CSM | | -235 | 212/1326-1358 | EVA I | | -236 | 212/1358-1426 | EVA 1 | | -237 | 212/1439-1558 | EVA 1 | | -238 | 212/1558-1643 | EVAI | | -239 | 212/1642-1818 | EVAI | | -240 | 212/1818-1850 | EVAI | | -241 | 212/1850-1910 | EVAI | | -242 | 213/1303-1404 | EVA 2 | | -243 | 213/1404-1430 | EVA 2 | | -244 | 213/1505-1538 | EVA 2 | | -245 | 213/1537-1717 | EVA 2 > LM | | -246 | 213/1716-1748 | EVA 2 | | -247 | 213/1747-1831 | EVA 2 | | -248 | 213/1838-1850 | EVA 2 | | -249 | 214/0908-0948 | EVA 3 | | -250 | 214/0947-1044 | EVA 3 | | -251 | 214/1043-1117 | EVA 3 | | -252 | 214/1116-1144 | EVA 3 | | -253 | 214/1143-1243 | EVA 3 | | -254 | 214/1242-1333 | EVA 3 | | -258 | 214/1711-1713 | LM Liftoff | at NSSDC. Any section or the entire film is available on a 3-month loan basis. Designation of the
desired part should be made by indicating the MSC Film ID Number as shown in the first column of Table 8. #### ORDERING PROCEDURES Investigators engaged in specific lunar studies will find the photographic indexes and catalogs very important for selecting photographs appropriate to their studies. As stated earlier, a catalog of all panoramic frames can be obtained on one reel of 35-mm microfilm whereas all mapping and Hasselblad photos can be obtained on 4- x 6-in. microfiche or 16-mm roll film. Corresponding indexes for these types of photos can be obtained on 16-mm microfilm or microfiche. When ordering Apollo 15 data, please refer to the index maps that are included with this Data Users' Note for the desired coverage and to the catalogs for the frame numbers of the desired photographs. Indicate the following in the request order: - · Apollo mission number - Complete frame number(s), e.g., AS15-85-11375 (AS = Apollo Spacecraft; 15 = mission number; 85 = magazine number; 11375 = frame number.) - Form and size of reproduction, e.g., 8- x 10-in. B/W print (glossy) or 4- x 5-in. color positive transparency - Other identifying information, e.g., crater or feature name or location of desired portion within a frame of the panoramic camera. The Apollo 15 Lunar Photography order form enclosed with this Note is provided for the requester's convenience. All parts of the form must be completed to ensure satisfactory request fulfillment. All required photography should be identified in a single order to expedite the processing of the request. Requesters should be aware of NSSDC policies concerning the dissemination of data. The purpose of the National Space Science Data Center is to provide data and information from space science experiments in support of additional studies beyond those performed by the principal investigators. Therefore, NSSDC will provide data and information upon request to any individual or organization resident in the United States. In addition, the same services are available to scientists outside the United States through the World Data Center A for Rockets and Satellites. Normally, a charge is made for the requested data to cover the cost of reproduction and the processing of the request. The requester will be notified of the cost, and payment must be received prior to processing the request. The Director of NSSDC may waive, as resources permit, the charge for modest amounts of data when they are to be used for scientific studies or for specific educational purposes and when they are requested by an individual affiliated with: (1) NASA installations, NASA contractors, or NASA grantees; (2) other U.S. Government agencies, their contractors, or their grantees; (3) universities and colleges; (4) state and local governments; or (5) non-profit organizations. NSSDC requires knowledge of the scientific use to which the data provided are being put. The Data Center would also appreciate receiving copies of all publications resulting from studies in which data supplied by NSSDC have been used. It is further requested that NSSDC be acknowledged as the source of the data in all publications resulting from use of the data provided. Requesters may view the Apollo 15 photographs at NSSDC. Inquiries about or requests for photographs from U.S. scientists should be addressed to: National Space Science Data Center Code 601.4 Goddard Space Flight Center Greenbelt, Maryland 20771 Telephone: (301) 982-6695 Requests from researchers outside the U.S.A. should be directed to: World Data Center A for Rockets and Satellites Code 601 Goddard Space Flight Center Greenbelt, Maryland 20771 U.S.A. Individuals or organizations that wish to obtain Apollo 15 photographic reproductions for purposes other than use in specific scientific research projects or college level space science courses should address their requests to: Public Information Division Code FP National Aeronautics and Space Administration Washington, D.C. 20546 Printed materials to satisfy general information requests are also available from the Public Information Division. Representative sets of Apollo photographs suitable for framing can be obtained (at cost) as full-color lithographs from: Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402 Requests should specify NASA picture sets as follows: - NASA Picture Set 1, "Apollo In the Beginning" (\$1.25) - NASA Picture Set 2, "Men of Apollo" (\$1.00) - NASA Picture Set 3, "Eyewitness to Space" (\$2.75) - NASA Picture Set 4, "First Manned Lunar Landing" (\$1.75) - NASA Picture Set 5, "Man on the Moon" (\$1.00) - NASA Picture Set 6, "Pinpoint for Science" (\$1.50) - NASA Picture Set 7, "Apollo 15" (1.50) Inquiries or requests regarding pictures of the earth taken during the Apollo missions should be directed to: Technology Application Center University of New Mexico Albuquerque, New Mexico 87106 #### LIST OF ACRONYMS AND ABBREVIATIONS ``` AC alternating current Apollo lunar surface experiments package ALSEP azimuth ΑZ black and white (film) B/W color exterior (film) CEX CIN color interior (film) Command Module CM CSM Command and Service Module DAC data acquisition camera DC direct current or data camera deg degree diagonal diag. DOI descent orbit insertion EC electric camera EDT Eastern Daylight Time Ekt. Ektachrome EL electric extravehicular activity EVA f ratio of aperture to focal length f-c foot candle FMC forward motion compensation FOV field of view fps feet per second ground controlled television assembly GCTA HBW high-speed black and white (film) high-speed color exterior (film) HCEX HDC Hasselblad data camera HEC Hasselblad electric camera hor. horizontal hr hour Hz hertz inch in. IVT intravehicular traverse kilogram kg km kilometer LBW low-speed black and white (film) LM Lunar Module LOI lunar orbit insertion LRV Lunar Roving Vehicle m meter MESA modularized equipment storage assembly minute min millimeter mm milliradian mrad MSC Manned Spacecraft Center ``` n.m. nautical mile NSSDC National Space Science Data Center pic picture R.A. right ascension rpm revolutions per minute sec second SEVA standup extravehicular activity SIM Scientific Instrument Module SM Service Module TEC transearth coast TLC translumar coast UT universal time UV ultraviolet v volt vert. vertical V/H velocity to height ratio VHBW very high-speed black and white (film) δ declination #### ACKNOWLEDGMENTS The Data Center wishes to thank the individuals and organizations responsible for the photographs and supporting data obtained during the Apollo 15 mission. This mission photography was accomplished by the Apollo 15 crew: Astronauts David Scott, James B. Irwin, and Alfred E. Worden. Arrangements to have the photographs and data available through NSSDC were made with the assistance of Dr. Richard Allenby, Mr. Leon Kosofsky, and Mr. George Esenwein, Apollo Lunar Exploration Office, NASA Headquarters; Mr. Andrew Patteson, Chief, Mapping Sciences Branch, and Mr. Robert Musgrove, Mapping Sciences Branch, NASA Manned Spacecraft Center; Mr. David Goldenbaum, Chief, Film Distribution, NASA Manned Spacecraft Center; and Mr. Kenneth Hancock, NASA Manned Spacecraft Center. | • | | | | |---|--|--|-----| į. | \$t | | | | | \$c | | | | | ÷ | | | | | ē. | | | | | * | | | | | ÷ | | | | | * | | | | | P. | | | | | * | #### **BIBLIOGRAPHY** "Apollo 15 Index of Mapping Camera and Panoramic Camera Photographs," Mapping Sciences Branch, Science and Applications Directorate, NASA Manned Spacecraft Center, Houston, Texas, Jan. 1972. "Apollo Optical Bar Panoramic Camera," Description Brochure, by Itek Optical Systems Division. Apollo 15 Preliminary Science Report, NASA SP-289, 1972. "Apollo 15 SIM bay Photographic Equipment and Mission Summary," Mapping Sciences Branch, NASA Manned Spacecraft Center, Houston, Texas, Aug. 1971. Batson, R. M., K. B. Larson, V. S. Reed, J. J. Rennilson, R. L. Sutton, R. L. Tyner, G. E. Ulrich, and E. W. Wolfe, "Preliminary Catalog of Pictures Taken on the Lunar Surface During the Apollo 15 Mission," U.S. Geological Survey Inter-Agency Report, 35, Aug. 27, 1971. "CSM/LM Spacecraft Operational Data Book, for J-Missions," North American Rockwell Corp., SNA-8-D-027, NASA Manned Spacecraft Center, Houston, Texas, Sept. 22, 1970. Doyle, F. J., "Photographic Systems for Apollo," Photogrammetric Engineering, 25, Oct. 1970. "The Role of Optics in the Apollo Program," Optical Spectra, 3, Sept.-Oct. 1969. Teague, W. T., "Final Photographic and TV Procedure - Apollo 15," Experiments Procedures Section, EVA/IVA Branch, Crew Procedures Division, NASA Manned Spacecraft Center, Houston, Texas, July 23, 1971. ## APPENDIX A # SUMMARY OF EXPERIMENTS CARRIED ON APOLLO 15 | | | | | * | |---|--|--|--|----| | | | | | K. | · | - | | | | | | 4. | APPENDIX A SUMMARY OF EXPERIMENTS CARRIED ON APOLLO 15 | | | | CI OTTO THE PROPERTY OF PR | | |---|------------
---|--|--| | EXPERIMENT | *.0N | PRINCIPAL INVESTIGATOR(S) | ADDRESS | OBJECTIVE | | | | TO A PROPERTY OF THE | COMMAND MODULE (Photographic) | tographic) | | Hasselblad (EL) | | CSM Orbital Science Photo Team,
F. J. Doyle, Chairman | U.S. Geological Survey
1340 Old Chain Bridge Road
McLean, Va. 22101
(202) 343-9445 | Photography of scientific interest targets | | Hasselblad (DC) | | CSM Orbital Science Photo Team,
F. J. Doyle, Chairman | U.S. Geological Survey
1340 Old Chain Bridge Road
McLean, Va. 22101
(202) 343-9445 | Photography of scientific interest targets | | Maurer (DAC) | | CSM Orbital Science Photo Team,
F. J. Doyle, Chairman | U.S. Geological Survey
1340 Old Chain Bridge Road
McLean, Va. 22101
(202) 343-9445 | Photography of scientific interest targets | | Window Meteoroid | S-176 | Mr. B. G. Cour-Palais | Geology Branch Planetary & Earth Sciences Div. NASA-Manned Spacecraft Ctr. Houston, Texas 77058 (713) 483-4757 | Determination of meteor flux, mass, and cratering | | UV Photography | S-177 | Dr. T. C. Owen | Dept. of Earth & Space Sciences
The State University of N.Y.
Stony Brook, N.Y. 11790
(516) 246-5000 | Dept. of Earth & Space Sciences Acquisition of UV photos of earth and moon The State University of N.Y. Stony Brook, N.Y. 11790 (516) 246-5000 | | Gegenschein | S-178 | Mr. L. Dunkelman | Code 613.3
Planetary Optics Section
NASA-GSFC
Greenbelt, Md. 20771
(301) 982-4988 | Determination of position, geometrics, and sources of particles | | | | | SERVICE MODULE (Photographic) | ographic) | | 24-in.
Panoramic
Camera | | CSM Orbital Science Photo Team,
F. J. Doyle, Chairman | U.S. Geological Survey
1340 Old Chain Bridge Road
McLean, Va. 22101
(202) 343-9445 | Photography of targets of scientific interest and geologic site selection. Acquisition of stereo coverage and high-resolution coverage. | | 3-in. Mapping
(Metric) Camera | | CSM Orbital Science Photo Team,
F. J. Doyle, Chairman | U.S. Geological Survey
1340 Old Chain Bridge Road
McLean, Va. 22101
(202) 343-9445 | Obtain photographs of geological and geodetic interest | | *Fyneriment numbers not available for all | ort availa | his for all inctermentation | | | *Experiment numbers not available for all instrumentation. APPENDIX A (continued) | | | A | AFFENDIA A (continued) | | |----------------------------|-------|--|--|---| | EXPERIMENT | *ON | PRINCIPAL INVESTIGATOR(S) | ADDRESS | OBJECTIVE | | | | | SERVICE MODULE (Photographic) (continued) | ic) (continued) | | Laser Altimeter | | CSM Orbital Science Photo Team,
F. J. Doyle, Chairman | U.S. Geological Survey
1340 Old Chain Bridge Road
McLean, Va. 22101
(202) 343-9445 | Determination of altitude and topographic data | | | | | OTHER EXPERIMENTS | TS | | γ-Ray
Spectrometer | S-160 | Dr. J. R. Arnold | Chemistry Dept.
U. of California, San Diego
La Jolla, Calif. 92037
(714) 453-2000, X-1453 | Determination of lunar surface composition and gamma-ray flux | | X-Ray
Fluorescence | S-161 | S-161 Dr. I. Adler | Code 641
Theoretical Studies Branch
NASA-GSFC
Greenbelt, Md. 20771
(301) 982-5759 | Determination of aluminum abundances in orbital path | | a-Particle
Spectrometer | S-162 | S-162 Dr. P. Gorenstein | AS&E
11 Carleton St.
Cambridge, Mass. 02142
(617) 868-1600, X-214 | Determination of surface composition in orbital path from radon isotopes | | Mass
Spectrometer | S-165 | Dr. J. H. Hoffman | Atmospheric and Space Sciences U. of Texas, Dallas P.O. Box 30365 Dallas, Tex. 75230 (214) 231-1471, X-322 | Atmospheric and Space Sciences Determination of lunar atmospheric composition U. of Texas, Dallas P.O. Box 30365 Dallas, Tex. 75230 (214) 231-1471, X-322 | | Bistatic Radar | S-170 | S-170 Mr. H. T. Howard | Stanford Electronics Lab. Stanford University Stanford, Calif. 94305 (415) 321-2300, X-3537 | Radar determination of surface roughness and
shape and material in orbital path | | | | | SUBSATELLITE EXPERIMENTS | MENTS | | S-Band
Transponder | S-164 | Mr. W. L. Sjogren | Code 156-251 Jet Propulsion Lab. 4800 Oak Grove Dr. Pasadena, Calif. 91103 (213) 354-4868 | Orbital tracking gravity field determination | | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | * Experiment numbers not available for all instrumentation. APPENDIX A (continued) | | | | \$ | | |---|--------------
--|---|--| | EXPERIMENT | *.
0
N | NO.* PRINCIPAL INVESTIGATOR(S) | ADDRESS | OBJECTIVE | | | · | | SUBSATELLITE EXPERIMENTS (continued) | 'S (continued) | | Particle Shadows/
Boundary Layer | S-173 | S-173 Dr. K. A. Anderson | Space Science Lab.
U. of California, Berkeley
Berkeley, Calif. 94726
(415) 642-1313 | Determination of particle interactions from solar wind and behavior of plasmas and electric fields | | Magnetometer | S-174 | S-174 Dr. P. J. Coleman, Jr. | Dept. Planetary and Space
Science
U. of California, L.A.
Los Angeles, Calif. 90024
(213) 825-1776 | Determination of lunar magnetic field and earth's magnetosphere | | | | | LUNAR MODULE - SURFACE | SURFACE EXPERIMENTS | | Contingency and
Selected Samples
Collection | | MSC Science Working Panel
Subgroup
Dr. R. O. Pepin, Chairman | School of Physics and Astronomy U. of Minnesota Minneapolis, Minn. 55455 (612) 373-7874 | Collection of rock samples for geologic composition and origin | | *************************************** | | THE THEORY OF THE TAXABLE PARTY TA | ALSEP EXPERIMENTS | TS | | Passive Seismic | S-031 | S-031 Dr. G. V. Latham | The Marine Biomedical Institute 200 University Blvd. Galveston, Texas 77550 (713) 765-2181 | Observation of internal activity and constitution and meteorite activity | | Magnetometer | S-034 | S-034 Dr. P. Dyal | Code N204-4 Space Science Division/ Electrodynamics Branch NASA Ames Research Center Moffett Field, Calif. 94034 (415) 961-1111, X-2706 | Observations of lunar magnetic field and its
variations | | Solar Wind
Spectrometer | S-035 | S-035 Dr. C. W. Snyder | Jet Propulsion Lab.
4800 Oak Grove Dr.
Pasadena, Calif. 91103
(213) 354-3744, X-2302 | Determination of solar wind composition, energies, densities, incidence angles, and variations | | | 1 | | | | *Experiment numbers not available for all instrumentation. APPENDIX A (continued) | EXPERIMENT | NO.* | NO.* PRINCIPAL INVESTIGATOR(S) | ADDRESS | OBJECTIVE | |---------------------------------|--------|---------------------------------|---|--| | | | | ALSEP EXPERIMENTS (continued) | ontinued) | | Supra-Thermal
Ion Detector | S-036 | Dr. J. W. Freeman | Dept. of Space Science
Rice University
Houston, Tex. 77001
(713).528-4141, X-1297 | Observations of lunar atmosphere and escaping gases | | Heat Flow | S-037 | S-037 Dr. M. E. Langseth | Lamont-Doherty Geological
Observatory
Columbia University
Palisades, N.Y. 10964
(914) 359-2900 | Determination of internal heat and constitution of moon | | Dust Detector | S-515 | S-515 Dr. S. C. Freden | Code 650
Lab. for Meteorology and
Earth Sciences
NASA-GSFC
Greenbelt, Md. 20771
(301) 982-5249 | Separation and measurement of high-energy radiation damage | | Cold Cathode
Ion Gauge | S-058 | S-058 Dr. F. S. Johnson | U. of Texas, Dallas
P.O. Box 30365
Dallas, Tex. 75230
(214) 231-1471, X-201 | Observation of lunar atmosphere and escaping ionized gases | | | | | OTHER SURFACE EXPER | EXPERIMENTS | | Lunar Field
Geology | S-059 | S-059 Dr. G. A. Swann | Center of Astrogeology
U.S. Geological Survey
601 E. Cedar Ave.
Flagstaff, Ariz. 86001
(602) 774-1406 | Observation of geology of site and origin of surface features | | Laser Ranging
Retroreflector | S-078 | S-078 Dr. J. E. Faller | Wesleyan University
Middletown, Conn. 06457
(203) 347-4421 | Determination of accurate selenographic location and earth distance, geodetic purposes | | Soil Mechanics | S-200 | S-200 Dr. J. K. Mitchell | Dept. of Civil Engineering
4400 Davis Hall
U. of California, Berkeley
Berkeley, Calif. 94726
(415) 642-1262 | Determination of soil properties, bearing strength, behavior | | |
 - | | | | *Experiment numbers not available for all instrumentation. # APPENDIX B LUNAR SURFACE TRACK COVERAGE AND SAMPLES OF APOLLO 15 PHOTOGRAPHIC AND SUPPORTING DATA | • | | | | • | | |---|--|---|---|---|----| 21 | | | | | | | | | | | | | | | | | | • | | | | | | | | | | t | • | * | 51 | Figure 1. Lunar Surface Track Coverage of Mapping Camera Figure 2. Lunar Surface Track Coverage of Panoramic Camera ### Figure 3. Representative Apollo 15 Photographs The following pages contain representative photographs, as identified below, taken during the Apollo 15 mission. - a. 80-mm Hasselbald photograph AS15-87-11697 taken in orbit: View of Mare Serenitatis north of Bessel Crater; LM in orbit. - b. 250-mm Hasselblad photograph AS15-96-12601 taken in orbit: Oblique view of Prinz Crater region, Aristarchus and Herodotus. - c. 500-mm Hasselblad photograph AS15-96-13044 taken in orbit: Prinz Crater and Prinz sinuous rills. - d. 60-mm Hasselblad surface photograph ASI5-87-11749: Panoramic view of Hadley delta (Spur Mountain in background). - e. 60-mm Hasselblad surface photograph AS15-88-11865: LM, Lunar Rover, Astronaut Irwin, Hadley delta to north. - f. 500-mm Hasselblad surface photograph AS15-84-11250: East flank of Hadley delta (Spur Mountain). - g. Mapping camera photograph AS15-2610: Lunar nearside view showing Aristarchus, Herodotus, and Shröter's Valley region. - h. Mapping camera photograph AS15-1820: Lunar nearside view showing Bradley Rill, Apennines, Conon Crater, and Hadley Rill (landing site). - i. Mapping camera photograph AS15-0414: Lunar nearside view of Hadley Rill (landing site) and Apennine Mountains. - j. Mapping camera photograph AS15-1032: Lumar farside view of Tsiolkovsky. - k. Panoramic camera photograph: Reduced from actual size of 9- x 45-in.; detail shows LM landing site. - 1. 70-mm Hasselblad panoramic mosaic AS15-48518 of Hadley Rill taken during EVA 3 on the lunar surface. - m. 70-mm Hasselblad panoramic mosaic AS15-47591 (contact print) taken during EVA 3. 3a. 80-mm Hasselblad (Orbit) 250-mm Hasselblad (Orbit) 500-mm Hasselblad (Orbit) 3c. 3d. 60-mm Hasselblad (Surface) 3e. 60-mm Hasselblad (Surface) 3f. 500-mm Hasselblad (Surface) Figure 3g. Mapping Camera (lunar nearside) Figure 3h. Mapping Camera (lunar nearside) Figure 3i. Mapping Camera (lunar nearside) Figure 3j. Mapping Camera (lunar farside) Figure 3k. Panoramic Camera (reduced from 9×45 in.) Figure 3k. Panoramic Camera (actual size; detail shows LM landing site) B-12 Figure 3m. 70-mm Hasselblad Panoramic Mosaic (contact print) APOLLO 15 HASSELBLAD 70mm (FILM WIDTH) PHOTOGRAPHS MAGAZINE QQ (AS15-81) FILM TYPE 3401 | NASA
PHOTO NO. | MISSION | LENS
f/1 | APPROX. | PRINC
PO] |
PRINCIPAL
POINT | CAMERA | ERA | SUN | DESCRIPTION | |-------------------|---------|-------------|---------|--------------|--------------------|--------|-----|------|---------------------------------------| | AS15-81 | 1100 | шш | | LAT. | LONG. | TILT | AZ | | | | 0884 | REV 61 | 200 | 113 | 24.0 N | 4.5 E | VERT | | 53° | ARATUS CRATER | | 10885 | REV 61 | 500 | 113 | 26.0 N | 4.0 E | VERT | | 52° | HADLEY RILLE, LANDING SITE | | 10886 | REV 61 | 200 | ۳, | 26.5 N | 3.5 E | VERT | : | 51° | HADLEY RILLE, LANDING SITE | | 10887 | REV 61 | 500 | 113 | 26.0 N | 3.5 E | VERT | | 513 | HADLEY RILLE, LANDING SITE | | 10888 | REV 61 | 200 | 113 | 24.0 N | 4.5 E | VERT | | 53° | ARATUS CRATER | | 10889 | REV 61 | 500 | 113 | 26.0 N | 4.5 E | VERT | | 52° | HADLEY LANDING SITE | | 10890 | REV 61 | 200 | 113 | 26.0 N | 3.5 E | VERT | | 51° | HADLEY RILLE, LANDING SITE | | 10891 | REV 61 | 500 | 113 | 26.0 N | 3.5 E | VERT | | 510 | HADLEY RILLE, LANDING SITE | | 10892 | REV 61 | 200 | 113 | 26.0 N | 3.0 E | VERT | | 51° | HADLEY RILLE, S OF LANDING SITE | | 10893 | REV 61 | 200 | 113 | 26.0 N | 3.0 € | VERT | | 5]° | HADLEY RILLE, S OF LANDING
SITE | | 10894 | REV 61 | 500 | 113 | 25.5 N | 3.0 E | VERT | | 510 | | | 10895 | REV 61 | 200 | 113 | 25.5 N | 3.0 E | VERT | | 5]° | HADLEY RILLE, CRATER
HADLEY C | | 10896 | 1 ! | 500 | 113 | 25.0 N | 2.5 E | VERT | | 51° | HADLEY RILLE, S OF CRATER
HADLEY C | | 10897 | REV 61 | 200 | 113 | 25.0 N | 2.5 E | VERT | | 51 ه | HADLEY RILLE, NEAR S END | | 10898 | REV 61 | 200 | 113 | 25.0 N | 2.0 E | VERT | | 51° | HADLEY RILLE, NEAR S END | Figure 4. Sample of Hasselblad Index, by Photo Number APOLLU 15 HASSELBLAD 70 mm (FILM WIDTH) PHOTOGRAPHS LUNAR SURFACE LE WINDOW, STANDUP EVA (SEVA) | NASA
PHOTO NO. | LENS | MAG | FILM | NUS | 2 | CAMERA | DESCRIPTION | |-------------------|------|--------|--------|------|-----|--------|-------------------------------------| | AS15- | mm | | 1 7 1 | AZ | EL. | | | | 87-11730 | 09 | X
X | 89808 | 96 | 13° | CDR | SEVA PAN, BENNETT HILL | | 87-11731 | 60 | ž | \$0368 | 96 | 13° | CDR | SEVA PAN, HILL 305 | | 87-11732 | 60 | KK | 50368 | 96 | 13° | CDR | SEVA PAN, HILL 305 | | 87-11733 | 60 | × | 80368 | 96° | 13° | CDR | SEVA PAN, HILL 305 | | 87-11734 | 09 | 莱 | 50368 | 96 | 13° | CDR | SEVA PAN, HILL 305 | | 87-11735 | 9 | KK | 80368 | 96، | 13° | CDR | SEVA PAN, NORTH COMPLEX | | 87-11736 | 60 | KK | \$0368 | 96 | 13° | CDR | SEVA PAN, NORTH COMPLEX, MT. HADLEY | | 87-11737 | 09 | × | 80368 | 96 و | 13° | COR | SEVA PAN, NORTH COMPLEX, MT. HADLEY | | 87-11738 | 09 | × | 80368 | .96 | 13° | CDR | SEVA PAN, NORTH COMPLEX, MT. HADLEY | | 87-11739 | 09 | X | 80368 | 96 ه | 130 | CDR | SEVA PAN, MT. HADLEY | | 87-11740 | 60 | * | 50368 | 96 | 13° | CDR | SEVA PAN, MT. HADLEY | | 87-11741 | 09 | KK | \$0368 | °96 | 13° | CDR | SEVA PAN, APENNINE FRONT | | 87-11742 | 9 | ΧX | \$0368 | -96 | 13° | CDR | SEVA PAN, APENNINE FRONT | | 87-11743 | 60 | ж
ж | 80368 | 96 | 13° | CDR | SEVA PAN, UP SUN | | 87-11744 | 09 | KK | 80368 | .96 | 13° | CDR | SEVA PAN, UP SUN | Figure 5. Sample of Hasselblad Index, by Surface Activities APOLLO 15 HASSELBLAD 70mm (FILM WIDTH) PHOTOGRAPHS LUNAR ORBIT | 333 | | direction seems | denominations de | | | | | esie (clim) (cum | | ar and the said | | Section of the second | Maria Comment Company | | 200000000000000000000000000000000000000 | | | |-----------|--------------------|-----------------|-----------------------|---------------------------|---------------------------|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------------|--------------------------|--------------------------|-----------------------------|---|-----------|--------------------| | | SE | | 24° | 34° | 34° | 35° | 37° | 37° | 37° | 37° | 33° | 33° | 33° | 35° | 20 ه | 48° | 49° | | | ERA | AZ | 190° | 180° | 180° | 180° | 225° | 225° | 225° | 225° | | | | | a 59Z | 270° | 270° | | | CAMERA | TILI | 30° | 30° | 30° | 30° | 45° | 45° | 45° | 45° | VERT | VERT | VERT | VERT | 55° | 55° | 30° | | | IPAL
NT | LONG. | 144 E | 132.5 E | 132 E | 131.5 E | 130 E | 130 E | 130 E | 130 E | 133 E | 133 E | 133 E | 131.5 E | 126 E | 129 E | 127 E | | | PRINCIPAL
POINT | LAT. | 18 S | 21 S | 21 \$ | 21 S | 20 S | 20 S | 20 S | 20 S | 18.5 S | 18 S | 18 S | 18.5 5 | 19.5 S | 20 S | 20 S | | | APPROX. | | 118 | 118 | 8 | 118 | 89 | 89 | 89 | 89 | 118 | 118 | 118 | 118 | 89 | 69 | 69 | | D.E. | 10 | шш | 250 | 250 | 250 | 250 | 60 | 60 | 60 | 09 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | | LONGITUDE | FILM | 1 1 F C | 50368 | 50368 | S0368 | \$0368 | 89108 | S0168 | 50168 | 50168 | 3414 | 3414 | 3414 | 3414 | 50368 | \$0368 | \$0368 | | ED BY | MAG. | | 0 | 0 | 0 | 0 | KK | K | KK | KK | s | S | S | Ŋ | Σ | Œ | æ | | INDEXED | DESCRIPTION | | CRATER GAGARIN, W RIM | CRATER TSIOLKOVSKY, E RIM | CRATER TSIOLKOVSKY, E RIM | CRATER TSIOLKOVSKY, E RIM | CRATER TSIOLKOVSKY | CRATER TSIOLKOVSKY | CRATER TSIOLKOVSKY | CRATER TSIOLKOVSKY | NE OF CRATER TSIOLKOVSKY | NE OF CRATER TSIOLKOVSKY | NE OF CRATER TSIOLKOVSKY | CRATER TSIOLKOVSKY, NE WALI | CRATER TSIOLKOVSKY | CRATER | CRATER TSIOLKOVSKY | | | NASA
PHOTO NO. | AS15- | 97-13156 | 97-13157 | 97-13158 | 97-13159 | 87-11726 | 87-11727 | 87-11728 | 87-11729 | 94-12740 | 94-12741 | 94-12742 | 94-12743 | 91-12381 | 91-12382 | 91-12383 | | | -ISNOT | | 140-150°E | 140-150°E | 140-150°E | 140-150°E | 130-140°E | 130-140°E | 130-140°E | 130-140°E | 130-140°E | 130-140°E | 130-140° | 130-140°E | 120-130°E | 120-130°E | 120-130°E | Figure 6. Sample of Hasselblad Index, by Longitude #### APOLLO 15 A15 R-62 MAP 12/71 FIN PAGE - 2091 | Ċ | YEAR MONT
MT 71 8 | | UR MINUTE
0 18 | SECOND | | | |---|----------------------|---------|-------------------|------------|---------------|---| | - | | | | | | | | | Y | z | 6 44
} | CDOT | Y DOT | z por | | STATE VECTOR X
1950.0 -1796.2511139 | 145.7121296 | -452.15 | 845112 | 065907 | 1.1115338 | 1, 1585694 | | SELENOGRAPHIC 210.1791592 | 1774.9752502 | -507.42 | 97218 1.4 | 846436 | .0137926 | .6450683 | | SIGMA(SELENO) 1.84 | .11 | | .88 | .000 | .002 | .000 | | LONGITUDE OF NADIR POINT
SIGMA NADIR LONGITUDE
LONG OF CAMERA AXIS INTERSECT
SPACECRAFT RADIUS | 83.2469082 | DEG | LATITUDE OF | NADIR PO | TNT | -15.8490558 DEC | | SIGMA NADIR LONGITUDE | .0010193 | DEG | SIGMA NADIR | LATITUDE | | .0004873 DEG | | LONG OF CAMERA AXIS INTERSECT | 83.2382889 | DEG | LATI OF CAM | ERA AXIS | INTERSECT | -15.8692123 DEG | | SPACECRAFT RADIUS
SIGMA SPACECRAFT RADIUS
MEAN ALTITUDE RATE
TILT AZIMUTH | 1858.0089417 | KM | SPACECRAFT | ALTITUDE | | 119.9189148 KM | | SIGMA SPACECRAFT RADIUS | .0000229 | KM . | AZIMUTH OF | VELOCITY | VECTOR | 294,5259933 DEG
1.6187495 KM/SEC
.3158990 DEG
.0020010 DEG | | MEAN ALTITUDE RATE | .0049493 | KM/SEC | HORIZONTAL | VEROCITY | | 1.6187495 KM/SEC | | TILT AZIMUTH | 202.3596478 | DEG | FILT ANGLE | | | .3158990 DEG | | SIGMA TILT AZIMUTH | .3627330 | DEG | SIGMA TILT | ANGLE | | .0020010 DEG | | SUN ELEVATION AT PRIN GRND PN | T 37.4651670 | DEG | SUN AZIMUTH | I AT PRINC | IPAL GRND PNT | 282.7785110 DEG | | LONGITUDE OF SUBSOLAR POINT | 32.5177565 | DEG | LATITUDE OF | ' SUBSOLAR | POINT | .1454069 DEG | | ALPHA | 0577027 | DEG | SWING ANGLE | | | 178.2399521 DEG | | EMISSION ANGLE | .3376793 | DEG | SIGMA SWING | ANGLE | | .3627326 DEG | | PHASE ANGLE | 52.5917954 | DEG | NORTH DEVIA | TION ANGL | E | 155.8776665 DEG | | PHI | 0097076 | DEG | X-TILT | | | 3157511 DEG | | SIGMA PHI | .0020000 | DEG | SIGMA X-TIL | T | | .0020000 DEG | | KAPPA | -155.8803482 | DEG | Y-TILT | | | .0097074 DEG | | SIGMA KAPPA | .0020000 | DEG | SIGMA Y-TIL | II. | | .0020000 DEG | | OMEGA | 315/511 | DEG | HEADING | | | -65.8804035 DEG | | SIGNA OMEGA | .0020000 | DEG . | SIGMA HEADI | NG | | .0020000 DEG | | SUN ELEVATION AT PRIN GRND PN LONGITUDE OF SUBSOLAR FOINT ALPHA EMISSION ANGLE PHASE ANGLE PHI SIGMA PHI KAPPA SIGMA KAPPA OMEGA SIGMA OMEGA SCALE FACTOR SPACECRAFT ALTITUDE (LASER) | .0000000 | M/KM | LASEK SLANT | KANGE | _ | .0000000 KM | | SPACEURAFT AUTITUDE (LASER) | .0000 | UOU KM | ALTITUDE | DIFFERENC | E | -119.9189148 KM | APOLLO 15 A15, REV 62, CONSTRAINED A, 1, AND OMEGA EPOCH (GMT): AUG 3, 1971 19 45 000 INITIAL FRAME: JUL 30, 1971 0 000 FINAL FRAME: AUG 30, 1971 4 0 34,160 INPUT STATE VECTOR, SELENOCENTRIC 1950.0 AT TIME FROM EPOCH: .00000 MIN #### PHYSICAL CONSTANTS LOCAL LUNAR RADIUS LUNAR GRAVITATIONAL CONSTANT EPHEMERIS TIME-UNIVERSAL TIME SCALE FACTOR FOR S/C EPHEMERIS 41,7500 SEC 6378,1492 KM - * DIVIDE CHECK AT 034207 - * DIVIDE CHECK AT 034207 - * DIVIDE CHECK AT 037612 Figure 7. Sample of Supporting Data for Mapping Camera Photographs APOLLO 15 METRIC CAMERA PHOTOGRAPHS 3 INCH (7.62 cm) FOCAL LENGTH | DESCRIPTION | STATE OF THE | CRATER GAGARIN | CRATER GAGARIN | CRATER GAGARIN | CRATER GAGARIN | NW WALL OF GAGARIN CRATER | NW WALL OF GAGARIN CRATER | ONE DEGREE SE OF DENNING CRATER | DOUBLE EXPOSED, ONE DEGREE NW
OF PIRQUET CRATER | ONE DEGREE NW OF CRATER PIRQUET | THREE DEGREES NW OF CRATER PIRQUET | FOUR DEGREES NW OF CRATER PIRQUET | FIVE DEGREES NW OF CRATER PIRQUET | NE OF TSIOLKOVSKY CRATER | NE OF TSIOLKOVSKY CRATER | NE OF TSIOLKOVSKY CRATER | |--------------------
--|----------------|----------------|----------------|----------------|---------------------------|---------------------------|---------------------------------|--|---------------------------------|------------------------------------|-----------------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------| | SUN | | 29 | 30 | 33 | 32 | 33 | 34 | 35 | 27 | 28 | 29 | 31 | 32 | 33 | 35 | 36 | | FWD
OVERLAP | 5 4 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 7.5 | | CAMERA | AZ | | | | | | | | | | | | | | | | | САМ | TILT | VERT VE RT | | I P A L
N T | LONG. | 150 E | 148.5 E | 147.5 E | 146.5 E | 145.5 E | 144.5 E | 143.5 E | 140.5 E | 139 E | 138 E | 136.5 E | 135.5 E | 134.0 E | 132.5 € | 131.0 E | | PRINCIPAL
POINT | LAT. | 19.0 S | 19.0 S | 18.5 S | 18 S | 18 S | 17.5 S | 17.5 \$ | 19.5 S | 19.0 S | 18.5 S | 18 S | 18 S | 17.0 S | 17.0 S | 16.5 S | | APPROX. | | 85 | 84 | 83 | 83 | 83 | 82 | 81 | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 118 | | REV | .01 | 4 | 4 | 4 | 4 | 4 | 4 | þ | 15 | 15 | 15 | 15 | 15 | 15 | 51 | 15 | | NASA
PHOTO NO. | AS15- | 7600 | 8 600 | 6600 | 0100 | 0101 | 0102 | 0103 | 0104 | 0105 | 0106 | 0107 | 0108 | 0109 | 0110 | 01111 | Sample of One-Line Index for Mapping Camera Photographs Figure 8. #### APOLLO 15 A15 R-4 PAN 12/71 FIN PAGE - 8849 YEAR MONTH DAY HOUR MINUTE SECOND CMT 71 7 30 2 18 .953 CET 12 44 .161 STATE VECTOR Х z X DOT Y DOT. Z DOT 1950.0 -1457.6200714 -497.4031143 -1003.2864456 -.8696580 1.1474606 .7309515 SELENOGRAPHIC -1663.7350922 148.5849686 -767.1752548 .0617772 1.5980249 .2230714 .08 1.98 .002 .000 .001 LONGITUDE OF NADIR POINT 174.8965607 DEG LATITUDE OF NADIR POINT -24.6687617 DEG SIGMA NADIR LONGITUDE .0011830 DEG SIGMA NADIR LATITUDE .0001591 DEG LONG OF COMERA AXIS INTERSECT 174.8577728 DEG LATI OF CAMERA AXIS INTERSECT -24.6787076 DEG SPACECRAFT RADIUS 1838.1103668 KM SPACECRAFT ALTITUDE 100.0203400 KM SIGMA SPACECRAFT RADIUS .0000039 KM AZIMUTH OF VELOCITY VECTOR 278.4178658 DEG MEAN ALTITUDE RATE -.0198428 KM/SEC HORIZONTAL VELOCITY 1.6145502 KM/SEC TILT AZIMUTH 254.2351532 DEG TILT ANGLE .6364292 DEG SIGMA TILT AZIMUTH .1811536 DEG SIGMA TILT ANGLE .0019885 DEG SUN ELEVATION AT PRIN GRND PNT 5.0247898 DEG SUN AZIMUTH AT PRINCIPAL GRND PNT 272.6008949 DEG LONGITUDE OF SUBSOLAR POINT 90.5083866 DEG LATITUDE OF SUBSOLAR POINT .2581425 DEG ALPHA -.6388978 DEG SWING ANGLE 245.8044662 DEG EMISSION ANGLE .6730397 DEG SIGMA SWING ANGLE .1811536 DEG PHASE ANGLE 85.6140738 DEG NORTH DEVIATION ANGEL 171.5524731 DEG PHI. .5805240 DEG X-TILT -.2608333 DEG SIGMA PHI .0019998 DEG SIGMA X-TILT .0020003 DEG KAPPA -171.5710239 DEG Y-TILT -.5805180 DEG SIGMA KAPPA .0020000 DEG SIGMA Y-TILT 0019997 DEG OMEGA -.2608333 DEG HEADING -81.5683775 DEG SIGMA OMEGA .0020003 DEG SIGMA HEADING .0020001 DEG SCALE FACTOR .0000000 M/KM LASER SLANT RANGE .0000000 км SPACECRAFT ALTITUDE (LASER) .00000000 KM ALTITUDE DIFFERENCE -100.0203400 KM SELENOGRAPHIC DIRECTION COSINES MAGNITUDE (KM) OF CAMERA AXIS .90262640 -.11338522 .41522207 98.999817 TRANSFORMATION MATRIX FROM TRANSFORMATION MATRIX FROM SELENOCENTRIC TO CAMERA LOCAL HORIZONTAL TO CAMERA -.52108333+00 .71879082+00 .46023031+00 -.98685250+00 .16123465+00 .11204741-01 .26996950+00 .65034504+00 -.71004767+00 -.16127417+00 -.98690586+00 -.27144739-02 -.80968430+00 -.24574588+00 -.53293562+00 | LATITUDE | LONGITUDE | |----------|-----------| | -28.741 | 173.177 | | -20.271 | 174.614 | | -20.347 | 175.237 | | -28.842 | 173.834 | .10620368-01 -.44858327-02 .99993358+00 Figure 9. Sample of Supporting Data for Panoramic Camera Photographs APOLLO 15 PANORAMIC CAMERA PHOTOGRAPHS 24 INCH (60.96 cm) FOCAL LENGTH | | DESCRIPTION | | NW. OF VAN DE GRAAFF CRATER | E. OF PARACELSUS CRATER | E. RIM PARACELSUS CRATER | FLOOR PARACELSUS CRATER | FLOOR PARACELSUS CRATER | FLOOR PARACELSUS CRATER | FLOOR PARACELSUS CRATER | W. RIM PARACELSUS CRATER | W. OF PARACELSUS CRATER | W. OF PARACELSUS CRATER | W. OF PARACELSUS CRATER | NE. OF BARBIER CRATER | |-----------------------|--------------------|--------|--|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-----------------------| | No. n | SUN
EL. | | 10 | 1 | 12 | 12 | 13 | 14 | <u></u> | 15 | 91 | 16 | 11 | 17 | 18 | <u>,</u> | 18 | | AL LE | REV
NO. | W | 4 | 4 | 4 | 4 | 4 | 4 | ţ. | Þ | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | JO CIII) FULAL LENGIA | APPROX.
ALT. km | | 96 | 96 | 95 | 95 | 95 | 94 | 94 | 94 | 93 | . 93 | 93 | 93 | . 26 | 92 | 92 | | INCH (00.90 | I PAL
N T | LONG. | 169.0 E | 168.0 E | 167.0 E | 167.0 E | 166.0 E | 165.0 E | 164.5 E | 164.0 E | 163.0 E | 162.5 E | 162.0 E | 161.5 E | 161.0 E | 160.0 € | 160.0 E | | 1 +7 | PRINCIPAL
POINT | LAT. | 24.0 S | 23.5 S | 23.5 S | 23.0 S | 23.0 S | 23.0 S | 23.0 S | 22.5 S | 22.5 S | 22.5 S | 22.5 S | 22.0 \$ | 22.0 S | 22.0 S | 22.0 \$ | | | STERED
FRAME | AS 13- | THE PERSON NAMED AND ADDRESS OF O | 8865 | 8867 | 8869 | 8871 | 8873 | 8875 | 8877 | 8879 | 8881 | 8883 | 8885 | 8887 | 8889 | 8891 | | | CAMERA | | AFT | FWD 540 | FWD | GX T | FWD | | | NASA
PHOTO NO. | AS 13- | 8859 | 8860 | 8862 | 8864 | 8856 | 8868 | . 8870 | 8872 | 8874 | 8876 | 8878 | 8880 | 8882 | 8884 | 3886 | Figure 10. Sample of One-Line Index for Panoramic Camera Photographs #### **APOLLO 15 LUNAR PHOTOGRAPHY** ORDER FORM Scientists OUTSIDE the United States send order to: WORLD DATA CENTER A ROCKETS AND SATELLITES CODE 601 GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771, USA
Scientists WITHIN the United States send order to: NATIONAL SPACE SCIENCE DATA CENTER CODE 601.4 GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771, USA | REQUESTER | INFORMATION | (Please print) | |-----------|-------------|----------------| |-----------|-------------|----------------| | REQUESTER INFORMATION (Please print) | | | | | | | |---|--|--|-------|---|---|---| | NAME AND TITLE | | | PO | SITION | | | | DIVISION/BRANCH | | *************************************** | ł | | MAIL | CODE | | ORGANIZATION | | | | | | | | ADDRESS | rhankovinaka | | | | *************************************** | | | CITY | *************************************** | | ST | ATE | | | | ZIP CODE OR COUNTRY | | TELEPHONE | (| Area Code) (N | umber) | (Extension) | | DATE OF REQUEST | DATE DATA
DESIRED | (C
P | lease | average processing time allow ample time for annot meet the date sp | delivery. | quest is 3 to 4 weeks.
We will notify you if | | NTENDED USE OF PHOTOGRAPHS | (check all that | apply) | | | | | | ☐ Support of a NASA effort (project, stud | • • | | | | | | | ☐ Support of a U.S. Government effort (of Research and analysis project (individual | | | | | | , | | Educational purposes (explain below) | or company sp | 10020(60) | | Exhibit or display | | | | ☐ Preparation of Master's thesis | | | П | Reference material | | | | ☐ Preparation of Doctoral thesis | | | | Use in publication | | | | ☐ Other: | | | | | | | | | WARRIED TO THE PROPERTY OF | NACCONTRACTOR (NACCONTRACTOR (NACCON | | | | · · · · · · · · · · · · · · · · · · · | | Please state briefly the research project(s) is please acknowledge NSSDC as the source of | #### NSSDC CHARGE AND SERVICE POLICY The purpose of the National Space Science Data Center (NSSDC) is to provide data and information from space science flight experiments in support of additional studies beyond those performed by the principal investigators. Therefore, NSSDC will provide data and information upon request to any individual or organization resident in the United States. In addition, the same services are available to scientists outside the United States through the World Data Center A (WDC-A) for Rockets and Satellites. (The addresses for both NSSDC and WDC-A are given above.) Normally, a charge is made for the requested data to cover the cost of reproduction and the processing of the request. The requester will be notified of the cost, and payment must be received prior to processing the request. However, the Director of NSSDC may waive, as resources permit, the charge for modest amounts of data when they are to be used for scientific studies or for specific educational purposes and when they are requested by an individual affiliated with: (1) NASA installations, NASA contractors, or NASA grantees; (2) other U.S. Government agencies, their contractors, or their grantees; (3) universities or colleges; (4) state and local governments; and (5) non-profit organizations. #### DATA REQUESTED | | PHOTOGRAPHIC INDEXES | | | | | | | | | | |--|--|---------------------------------|--|----------------------------|-----------------|------------------------------|------|--|--|--| | ☐ Indexes for Hasselblad, panoramic, and mapping (metric) camera photography (on a single reel of 16-mm microfilm) | | | | | | | | | | | | ☐ Microfiche index for Hasselblad camera photography | | | | | | | | | | | | ☐ Microfiche index for | ☐ Microfiche index for panoramic and mapping (metric) camera photography | | | | | | | | | | | PHOTOGRAPHIC CATA | LOGS | | | | | | | | | | | ☐ Catalog of Hasselblad | photography and pa | anoramic r | nosaics (16- | -mm roll f | Im 🛛 microfich | ne 🗆) | | | | | | Catalog of mapping (| | | | | | | | | | | | ☐ Catalog of panoramic | camera photograph | y (availabl | e as 35-mm | roll film o | only) | | | | | | | PHOTOGRAPHIC DATA | ١ | | | | | · · | | | | | | Complete black and v | vhite set of Hasselbla | ad 70-mm | contact pri | nts | | | | | | | | ☐ Complete black and v | white set of Hasselbla | ad 70-mm | films (posi | tive 🗆 r | negative 🗆) | | | | | | | Complete set of Niko | n 35-mm roll film (_l | positive 🗀 |] negative | · 🗆) | | · | | | | | | ☐ Complete set of map; | oing camera photogr | aphs in the | e form of: | | | | | | | | | Contact prints | _ | | | | | | | | | | | ☐ film (positive ☐ | negative 🔲) | | | | _ | | | | | | | Complete set of near- | -terminator coverage | from the | : Ll map | oing camer | a 🔲 panoramic c | amera | | | | | | Contact prints | -continue DA | | | | | | | | | | | ☐ film (positive ☐ ☐ Complete set of pano | negative []) | oranhe in 1 | he form of | | | | | | | | | Contact prints | ranne camera photos | Richitz III i | ine ioiin oi. | | | * · • | | | | | | ☐ film (positive ☐ | negative 🗆) | | | | | | | | | | | Complete set of 16-n | | month loa | n 🔲 perr | nanent ret | ention 🗆) | | | | | | | ☐ Complete set of 16-n | nm kinescope roll fil | m (availab | le on 3-mo | nth loan ba | asis only) | | | | | | | | | | | | | | | | | | | ☐ Other: | | | | | | | | | | | | | | | | | · | FORM OF | | | | | | | | | COMPLETE
FRAME NUMBERS | TYPE | RE | FORM OF | ION | SIZE OF | OTHER | | | | | | COMPLETE
FRAME NUMBERS
(e.g., AS15-13-2319) | TYPE
(e.g., Pan,
Mapping, etc.) | RE
Paper | FORM OF | | | OTHER
IDENTIFYING INFORMA | TION | | | |
 FRAME NUMBERS | (e.g., Pan, | RE | FORM OF
PRODUCT
Black and | ON
Positive | | | TION | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | TION | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | TION | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | TION | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | TION | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | TION | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS | (e.g., Pan, | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS
(e.g., AS15-13-2319) | (e.g., Pan,
Mapping, etc.) | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS | (e.g., Pan,
Mapping, etc.) | RE
Paper
Print or | FORM OF
PRODUCT
Black and
White or | Positive
or | | | | | | | | FRAME NUMBERS
(e.g., AS15-13-2319) | (e.g., Pan, Mapping, etc.) | RE
Paper
Print or
Film | FORM OF
PRODUCT
Black and
White or
Color | Positive
or | | | | | | | | FRAME NUMBERS (e.g., AS15-13-2319) PHOTOGRAPHIC SUPPO | (e.g., Pan, Mapping, etc.) ORTING DATA upporting data (16- | RE Paper Print or Film | FORM OF
PRODUCT
Black and
White or
Color | Positive
or
Negative | | | | | | | #### PRICE LIST FOR REPRODUCTIONS The list that accompanies this order form indicates the per item and complete set costs of Apollo 15 reproductions. These prices are subject to change without notice. Prices for color reproduction services or for reproduction of complete sets of photographs other than those stated on the price list will be quoted upon request. #### APOLLO 15 PRICE LIST # PHOTOGRAPHIC INDEXES | One roll of 16-mm microfilm containing the Hasselblad, mapping (metric), and panoramic | | |--|--------| | camera indexes S | \$4.15 | | Hasselblad index on microfiche | 1.50 | | Panoramic and mapping camera indexes on microfiche | 1.00 | # PHOTOGRAPHIC CATALOGS | CAMERA TYPE | MICROFICHE | 16-mm ROLL FILM | 35-mm ROLL FILM | |------------------|------------|-----------------|-----------------| | Hasselblad | \$8.50 | \$4.80 | | | Mapping (metric) | 8.50 | 4.80 | _ | | Panoramic | <u>-</u> | ****** | \$6.20 | # **COMPLETE SETS OF PHOTOGRAPHS** (on continuous rolls) | SIZE AND CAMERA TYPE | CONTACT PRINTS | FILM TRANSPARENCIES | |----------------------------------|----------------|---------------------| | 70-mm Hasselblad | \$ 65.15 | \$ 147.65 | | 35-mm Nikon | quinon. | 6.20 | | 5-in. mapping (metric) | 204.61 | 361.49 | | 5-in. mapping, near terminator | 86.45 | 156.85 | | 5-in. panoramic | 842.47 | 1560.85 | | 5-in. panoramic, near terminator | 100.45 | 182.80 | | 16-mm Maurer color films | Marrier . | 144.00 | # TYPICAL PER ITEM COSTS (black and white reproductions only)* | FORM | SIZE | COST | FORM | SIZE | COST | |--------|--------------|--------|-----------------|-----------------|--------| | | 4 x 5 in. | \$0.50 | FILM DUPLICATES | 4 x 5 in. | \$0.70 | | | 5 x 5 in. | 0.65 | | 5 x 5 in. | 0.90 | | | 8 x 10 in. | 0.70 | | 5 x 48 in. | 3.95 | | | 11 x 14 in. | 0.75 | | | | | PRINTS | 16 x 20 in. | 2.00 | | 2 x 2 in. | 0.90 | | | 20 x 24 in. | 3.00 | SLIDES | 2.25 x 2.25 in. | 0.95 | | | 5 x 48 in. | 2.50 | | 3.25 x 4 in. | 1.75 | | | 9.5 x 72 in. | 3.50 | | | | ^{*}Prices for color reproduction services will be quoted upon request. en de la companya co and the second of o Magazia de la composição . Programme in the company of the comp and American American American and American American American American American American American American Amer American Am en de la companya co en de la companya co